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1. Basics

We quickly recall some of the definitions from the first lecture. Let R = k[x1, . . . , xn] be
a polynomial ring over k. A monomial has the form

xα = xa1

1 xa2

2 · · ·x
an

n with ai ∈ N.

A monomial is squarefree if each ai = 0 or 1. An ideal is a (squarefree) monomial ideal if I
is generated by (squarefree) monomial ideals.

Example 1.1. Let R = k[x1, x2, x3, x4]. The ideal I = (x6
1, x

3
2x4, x4) is a monomial ideal,

while I = (x1x2, x2x3, x3x4, x4x1) is a squarefree monomial ideal.

Lemma 1.2. Every monomial ideal is generated by a unique minimal set of generators, and
this set is finite.

For a proof, see Lemma 1.2 of [MS].

Question 1.3. How do I enter a monomial ideal into Macaulay 2?

Answer. As in most operations, you must first specify a polynomial ring which contains the
ideal I. To enter the ideal, use the monomialIdeal command. For example:
i1 : R = QQ[x_1..x_5]

o1 = R

o1 : PolynomialRing

i2 : I = monomialIdeal(x_1*x_2,x_2*x_3*x_4)

o2 = monomialIdeal (x *x , x *x *x )

1 2 2 3 4

o2 : MonomialIdeal of R

You could also use the command ideal. However, if you will only be using monomial ideals,
it is better to use the command monomialIdeal since some calculations are better optimized
for monomial ideals. For example, compare the two inputs:
i3 : J1= monomialIdeal(x_1*x_2,x_2*x_3*x_4,x_2)

o3 = monomialIdeal(x )

2

o3 : MonomialIdeal of R

i4 : J2 =ideal(x_1*x_2,x_2*x_3*x_4,x_2)

o4 = ideal (x *x , x *x *x , x )

1 2 2 3 4 2

1
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o4 : Ideal of R

Notice from the output that the monomialIdeal command recognizes the minimal generators
of the ideal, while the ideal command does not find a list of the minimal generators.

2. Simplicial Complexes and Stanley-Reisner rings

During the first lecture, you were introduced to simplicial complexes. We now describe
how to use Macaulay 2 to study and describe simplicial complexes.

Definition 2.1. An (abstract) simplicial complex ∆ on V = {x1, . . . , xn} is a subset of the
power set of V such that

• {xi} ∈ ∆ for each i;
• if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

Remark. If ∆ 6= ∅, then ∅ ∈ ∆. We usually omit ∅ when writing the elements of ∆.

Example 2.2. Let V = {x1, x2, x3, x4, x5}. The follow set ∆ is an example of a simplicial
complex:

∆ = {{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, {x1, x2}, {x1, x3}, {x1, x4}

{x2, x3}, {x2, x4}, {x2, x5}, {x3, x4}, {x3, x5}, {x1}, {x2}, {x3}, {x4}, {x5}}.

We can visualize ∆ has a hollow tetrahedron with an edge attached at both x2 and x3. Both
of these edges are also attached to the vertex x5. Here is a picture:

Definition 2.3. The elements of ∆ are called faces. The maximal faces under inclusion are
called facets.

We use the notation |S| to denote the number of elements in a set S.

Definition 2.4. If F ∈ ∆ is a face, then the dimension of F is dim F = |F | − 1. If F = ∅,
we set dim F = −1. The dimension of ∆ is dim ∆ = max{dim F | F ∈ ∆}.
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Definition 2.5. If ∆ is a simplicial complex, then set

fi = fi(∆) = number of faces of dimension i.

If dim ∆ = d, then the f -vector of ∆ is the d-tuple f(∆) = (f0, f1, . . . , fd−1).

Remark. f−1 = 1 since ∅ ∈ ∆ and dim ∅ = −1. Also f0 = |V |, the number of vertices.

Definition 2.6. A simplicial complex ∆ is pure if all its facets have the same dimension.

Example 2.7. The f -vector of the simplicial complex of Example 2.2 is f(∆) = (5, 8, 4).
Since ∆ has 4 facets of dimension 2, and 2 facets of dimension 1, ∆ is not a pure simplicial
complex.

Now that we have introduced some terminology, let’s describe how to do some of these
things using Macaulay 2.

Question 2.8. How do I input a simplicial complex into Macaulay 2?

Answer. Macaulay 2 contains a package specifically written for dealing with simplicial com-
plexes. To use this package, you first need to load the package using the following command:

i5 : loadPackage "SimplicialComplexes";

i6 : R = ZZ[x_1..x_5] -- introduce polynomial ring

o6 = R

o6 : PolynomialRing

Once you have loaded the package, you need to define a polynomial ring where the indeter-
minates of the ring correspond to the vertex set of ∆. In the above, we have already defined
the polynomial ring with five variables.

To enter the simplicial complex, enter the facets as list. When entering a facet, write the
facet as a squarefree monomial. E.g., the facet {a, b, c} is inputed as a*b*c. Then apply the
command simplicialComplex to the list.

i7 : L = {x_1*x_2*x_3,x_1*x_2*x_4,x_1*x_3*x_4,x_2*x_3*x_4,x_2*x_5,x_3*x_5}

-- write each facet as a monomial

o7 = {x *x *x , x *x *x , x *x *x , x *x *x , x *x , x *x }

1 2 3 1 2 4 1 3 4 2 3 4 2 5 3 5

o7 : List

i8 : Delta = simplicialComplex L

o8 = | x_3x_5 x_2x_5 x_2x_3x_4 x_1x_3x_4 x_1x_2x_4 x_1x_2x_3 |

o8 : SimplicialComplex

Note that Delta is the simplicial complex of Example 2.2.

Question 2.9. I’ve inputed my simplicial complex ∆; how do I now find dim ∆? the f -
vector? the facets of ∆?
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Answer. Macaulay 2 contains functions for each of the above desired operations (remember,
you must first load the simplicialComplexes package). For dimension, simply input

i9 : dim Delta

o9 = 2

For the f -vector, you can use the command fVector:

i10 : fVector Delta

o10 = HashTable{-1 => 1}

0 => 5

1 => 8

2 => 4

o10 : HashTable

The output is listed a table; so, for our simplicial complex, we have five 0-dimensional faces,
eight 1-dimensional faces, and four 2-dimensional faces. (This agrees with Example 2.7.) The
command facets will output a matrix whose entries consist of the facets of the simplicial
complex.

i11 : facets Delta -- all facets of Delta

o11 = | x_3x_5 x_2x_5 x_2x_3x_4 x_1x_3x_4 x_1x_2x_4 x_1x_2x_3 |

1 6

o11 : Matrix R <--- R

Macaulay 2 actually allows you to list all the faces of ∆ of any given dimension with the
faces command. Note that the output is a matrix.

i12 : faces(0,Delta) -- all 0-dim faces

o12 = | x_1 x_2 x_3 x_4 x_5 |

1 5

o12 : Matrix R <--- R

i13 : faces(1,Delta) -- all 1-dim faces

o13 = | x_1x_2 x_1x_3 x_1x_4 x_2x_3 x_2x_4 x_2x_5 x_3x_4 x_3x_5 |

1 8

o13 : Matrix R <--- R

i14 : faces(4,Delta) -- all 4-dim faces (there are none!)

o14 = 0

1

o14 : Matrix R <--- 0

The package simplicialComplexes also contains a command to check if ∆ is pure.

i15 : isPure(Delta)

o15 = false

Again, this answer agrees with our earlier observation that ∆ is not pure.
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Let’s return to f -vectors. Given a d tuple f = (f0, f1, . . . , fd−1) ∈ N
d, it is natural to

ask if there exists a simplicial complex ∆ with f -vector f(∆) = f . Kruskal and Katona
independently gave a characterization of what vectors could be the f -vector of a simplicial
complex. To state their result, we need the following result. In the sequel we set

(

l
k

)

= 0 if
0 ≤ l < k.

Lemma 2.10. Let d be a positive integer. Any a ∈ N can be written uniquely in the form

a =

(

k(d)

d

)

+

(

k(d− 1)

d− 1

)

+ · · ·+

(

k(j)

j

)

where k(d) > k(d−1) > · · · > k(j) ≥ j ≥ 1. We refer to the above sum as the d-th Macaulay
representation of a.

See Lemma 4.2.6 of [BH] for a proof. We now define the function (d) : N→ N as follows: for
any a ∈ N, set

a(d) =

(

k(d)

d + 1

)

+

(

k(d− 1)

d

)

+ · · ·+

(

k(j)

j + 1

)

where k(d), . . . , k(j) are the numbers that appear in the dth Macaulay representation of a.

Example 2.11. Let a = 23 and d = 3. The 3rd Macaulay representation of 23 is 23 =
(

6
3

)

+
(

3
2

)

= 20 + 3. Thus 23(3) =
(

6
4

)

+
(

3
3

)

= 15 + 1 = 16.

Theorem 2.12. A tuple f = (f0, . . . , fd−1) ∈ N
d is the f -vector of some (d − 1) dimension

simplicial complex if and only if

0 < fi+1 ≤ f
(i+1)
i for 0 ≤ i ≤ d− 2.

This theorem is Theorem 2.1 of [S].

Question 2.13. I want to test if a tuple is a f -vector. How do I do this?

Answer. For this question, it is probably best to break this problem into two tasks. The first
task is to write a program that receives a and d as input and returns a(d). The second task
is to check if a given tuple satisfies the conditions of Theorem 2.12. Here is a program that
does the first task:

i16 : aUpperd = (a,d)-> (

k = {};

for i from 0 to (d-1) do (

ki = 0;

while (a >= binomial(ki,d-i)) do ki = ki+1;

k = append(k,ki-1);

a = a - binomial(ki-1,d-i);

);

l = sum toList apply(0..(d-1),j->binomial(k_j,d+1-j));

return(l)

);

i17 : aUpperd(23,3)

o17 = 16
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We have checked our program by calculating 23(3). The output is 16, as we expected. This
routine is the basis for our second routine that checks whether a tuple of N

d is a valid
f -vector.

i18 : validfVector=f->(

for j from 0 to #f-2 do (

if (f_(j+1) > aUpperd(f_j,j+1)) then return (false);

);

return(true);

);

i19 : validfVector(5,8,4)

o19 = true

i20 : validfVector(6,16,18)

o20 = false

We know that f = (5, 8, 4) is a valid f -vector since f = f(∆), where ∆ is the simplicial
complex of Example 2.2. Also, to see that f = (6, 16, 18) cannot be a f -vector, notice that if
there was such a simplicial complex, it would have to have 6 vertices. But between 6 vertices
we can have at most

(

6
2

)

= 15 edges, so f1 ≤ 15. However, our f has f1 = 16.

As mentioned in the first lecture, we can associate to any simplicial complex ∆ on V =
{x1, . . . , xn} the following squarefree monomial ideal:

I∆ = (xi1 · · ·xir | {xi1 , . . . , xir} 6∈ ∆) ⊆ R = k[x1, . . . , xn].

The ideal I∆ is generated by the minimal non-faces of ∆. The ideal I∆ is called the Stanley-
Reisner ideal, and R/I∆ is the Stanley-Reisner ring.

Conversely, one can associate to a squarefree monomial idea I a simplicial complex ∆ by

∆ = {{xi1 , . . . , xir} | xi1 · · ·xir is a squarefree monomial not in I}.

As a quick exercise, you should verify that ∆ is indeed a simplicial complex.

In the simplicialComplexes package, Macaulay 2 contains functions for finding I∆ given
∆, and ∆ given I. We describe how this works

Question 2.14. I have a simplicial complex ∆. How do I find I∆ with Macaulay 2?

Answer. Suppose you have entered your simplicial complex into Macaulay 2 using the meth-
ods described above. The command monomialIdeal applied to the simplicial complex will
then return the ideal I∆. For example, if we use Delta to represent the simplicial complex
of Example 2.2 we can find the associated ideal I∆ as follows:

i21 : monomialIdeal Delta

o21 = monomialIdeal (x *x *x *x , x *x , x *x *x , x *x )

1 2 3 4 1 5 2 3 5 4 5

o21 : MonomialIdeal of R

The output is a monomial ideal. Note that x1x2x3x4 ∈ I∆ since this monomial corresponds
to the face {x1, x2, x3, x4}; in our example, the tetrahedron formed by x1, x2, x3, x4 is hollow,
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so ∆ is missing the face {x1, x2, x3, x4}. As well, there is no edge between x1 and x5, so this
is why x1x5 appears as a generator.

You could also use the command ideal Delta but then output is treated as an ideal and
not a monomial ideal by Macaulay 2.

Question 2.15. I have a squarefree monomial ideal. How do I find its associated simplicial
complex ∆?

Answer. Enter the generators of the squarefree monomial ideal using the monomialIdeal
command. Then apply the command simplicialComplex:
i22 : R = QQ[x_1..x_6]

o22 = R

o22 : PolynomialRing

i23 : I = monomialIdeal (x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_6*x_1)

o23 = monomialIdeal (x *x , x *x , x *x , x *x , x *x , x *x )

1 2 2 3 3 4 4 5 1 6 5 6

o23 : MonomialIdeal of R

i24 : D = simplicialComplex I

o24 = | x_2x_4x_6 x_3x_6 x_1x_3x_5 x_2x_5 x_1x_4 |

o24 : SimplicialComplex

You can now employ any of the commands we mentioned earlier. For example, we can find
the associated f -vector:
i25 : fVector D

o25 = HashTable{-1 => 1}

0 => 6

1 => 9

2 => 2

o25 : HashTable

As seen in the first lecture, the Hilbert series of of R/I∆ contains information about ∆.
We consider another similar result that relates the dimension of ∆ to the dimension of R/I∆.
See Theorem 5.1.4 of [BH] for a proof.

Theorem 2.16. Let R = k[x1, . . . , xn] with k a field, and ∆ a simplicial complex on V =
{x1, . . . , xn}. Then

dim R/I∆ = dim ∆ + 1.

Note the two uses of dimension in the statement of the theorem. The dimension on the left
hand side is the Krull dimension. On the right, dimension is used to denote the dimension
of a simplicial complex.

Question 2.17. How do I find the dimension of a ring in Macaulay 2?
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Answer. The appropriate command is dim. For example, using I and R as in the previous
question we get

i26 : S = R/I

o26 = S

o26 : QuotientRing

i27 : dim S -- dimension of ring

o27 = 3

i28 : dim D -- dimension of simplicial complex

o28 = 2

In our example, we see that the dimension of R/I∆ is indeed one more than the dimension
of ∆. Note that the command dim I will also return the dimension of R/I.

As a warning, to make use of Theorem 2.16 you must ensure that the coefficient ring of
R is a field. For example, if we repeat the above example, but replace the coefficients with
Z, then the identity of Theorem 2.16 no longer holds.

i29 : T = ZZ[x_1..x_6] -- incorrect example

o29 = T

o29 : PolynomialRing

i30 : I = monomialIdeal (x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_6*x_1)

o30 = monomialIdeal (x *x , x *x , x *x , x *x , x *x , x *x )

1 2 2 3 3 4 4 5 1 6 5 6

o30 : MonomialIdeal of T

i31 : D = simplicialComplex I

o31 = | x_2x_4x_6 x_3x_6 x_1x_3x_5 x_2x_5 x_1x_4 |

o31 : SimplicialComplex

i32 : B = T/I

o32 = B

o32 : QuotientRing

i33 : dim B

o33 = 4

i34 : dim D -- dim B =!= dim D + 1

o34 = 2
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3. Resolutions and Betti numbers

Let R = k[x1, . . . , xn] be a polynomial ring over an arbitrary field k. If I is a homogeneous
ideal of R, then associated to R/I is a minimal graded free resolution of the form

0→
⊕

j

R(−j)βl,j(R/I) →
⊕

j

R(−j)βl−1,j(R/I) → · · · →
⊕

j

R(−j)β1,j(R/I) → R→ R/I → 0

where the maps are exact, l ≤ n, and R(−j) is the R-module obtained by shifting the degrees
of R by j. The number βi,j(R/I), the i, jth graded Betti number of R/I, is an invariant of
R/I that equals the number of minimal generators of degree j in the ith syzygy module of
R/I. The ith Betti number is βi(R/I) =

∑

j∈N
βi,j(R/I).

One of the important questions in commutative algebra is to describe the graded Betti
numbers of a monomial ideal. Ideally, we would like a formula for all the numbers that
depends upon only knowing the generators of I. (Unfortunately, this is too much to expect
since some of the numbers will depend upon the characteristic of the field k.)

In tomorrow’s lecture, you will hear more about resolutions. Here, we quickly introduce
some of the basic commands in Macaulay 2 dealing with resolutions.

Question 3.1. I have a homogeneous ideal; how do I find its resolution?

Answer. For an example, consider the defining ideal of the following five points in P
2:

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1], P4 = [1 : 1 : 1], P5 = [19 : 64 : 42].

If R = k[x, y, z] is the coordinate ring of P
2, then the defining ideal of P = [a : b : c] is

IP = (ay−bx, az−cx). So, if X = {P1, . . . , P5}, then the defining ideal of X is IX =
⋂5

i=1 IPi
.

We enter this ideal as follows.

i35 : R = QQ[x,y,z] -- coordinate ring of P^2

o35 = R

o35 : PolynomialRing

i36 : IX = intersect(ideal(y,z),ideal(x,z),ideal(x,y),ideal(y-x,z-x),ideal(19*y-64*x,19*z-42*x))

2 2 2 2 2 2

o36 = ideal (945x*y - 736x*z - 209y*z, 945y z + 704x*z - 1649y*z , 1890x z - 2327x*z + 437y*z )

o36 : Ideal of R

The command res I will then return the non-graded resolution, i.e., it will return the ranks
(i.e., the numbers βi(R/IX)) of the free modules in the minimal free resolution of R/IX .

i37 : G = res IX

1 3 2

o37 = R <-- R <-- R <-- 0

0 1 2 3

o37 : ChainComplex
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So, β0(R/IX) = 1, β1(R/IX) = 3, and β2(R/IX) = 2. Note that the output truncates the
beginning of the resolution, that is, it omits the “0 ← R/IX ←”. If you want to know the
maps in the resolution, they can be recovered as follows:
i38 : G.dd

1 3

o38 = 0 : R <-------------------------------------------------------------------------------------- R : 1

| xy-736/945xz-209/945yz x2z-2327/1890xz2+437/1890yz2 y2z+704/945xz2-1649/945yz2 |

3 2

1 : R <----------------------------------------- R : 2

{2} | -xz+1909/1890z2 -yz+913/945z2 |

{3} | y-736/945z -704/945z |

{3} | -437/1890z x-209/945z |

2

2 : R <----- 0 : 3

0

o38 : ChainComplexMap

The maps are outputted as matrices.

Question 3.2. I want the graded Betti numbers of my ideal I; how do I use Macaulay 2 to
find these numbers?

Answer. The Betti numbers of an ideal can be extracted with the command betti. We
continue to use IX as in the last example:
i39 : betti res IX

o39 = total: 1 3 2

0: 1 . .

1: . 1 .

2: . 2 2

The output of betti res I is sometimes called the Betti diagram of I. The top row lists
the total number of generators in each syzygy module (compare with the ranks of the free
modules that appear with the command res I). The entry in column i and row j − i
(the counting of each row and each column starts at 0 instead of 1) corresponds to the
number βi,j(R/I). For example, in the second column and second row there is a 2. So
β2,2+2(R/IX) = β2,4(R/IX) = 2.

Question 3.3. I just want to know a specific Betti number βi,j(R/I). How do I do this?

Answer. The output of betti res I is not stored as a matrix, so you cannot just ask for the
entry in the matrix at position (i, j− i). The following script, however, will return βi,j(R/I).
i40 : BettiIJ = (i,j,I)->(

G = res I;

B = G_i;

B = flatten degrees B;

t = tally B;

if (t #? j) then return (t#j)

else return(0);

);
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i41 : BettiIJ(2,3,IX)

o41 = 0

i42 : BettiIJ(2,4,IX)

o42 = 2

Two important invariants associated with a graded resolution are the regularity and the
projective dimension.

Definition 3.4. Let I be a homogeneous ideal of R = k[x1, . . . , xn]. The regularity of R/I,
denoted reg(R/I), is the number

reg(R/I) = max{j − i | βi,j(R/I) 6= 0}.

The projective dimension of R/I, denoted pdim(R/I), is the number

pdim(R/I) = max{i | βi,j(R/I) 6= 0 for some j}.

The regularity measures the “width” of the resolution, while the projective dimension
measures the “length” of the resolution. These invariants have a natural interpretation in
terms of the Betti diagram. The regularity corresponds to the number of rows in the Betti
diagram (counting rows starting with 0), while the projective dimension is the number of
columns (again, start your counting with 0).

Question 3.5. I have a homogeneous ideal I, and I want to know reg(R/I) and pdim(R/I).
Are there commands to find the regularity and projective dimension?

Answer. As a first step, you first need to input R/I so that Macaulay 2 views R/I as an
R-module, not simply a quotient ring. Using the ideal I = IX as above, we turn R/I into
an R-module as follows:
i43 : B = coker gens IX

o43 = cokernel | 945xy-736xz-209yz 945y2z+704xz2-1649yz2 1890x2z-2327xz2+437yz2 |

1

o43 : R-module, quotient of R

In the above B = R/I, but it is stored as an R-module. We can now find the regularity and
projective dimension of R/I as follows:
i44 : regularity(B)

o44 = 2

i45 : pdim(B)

o45 = 2

Note that this agrees with Betti diagram of R/I which had two rows and two columns
(counting from 0 instead of 1).

We end our quick discussion of resolution by introducing a class of ideals with a special
type of resolution. These ideals are related to today’s tutorials.
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Definition 3.6. Let I be a homogeneous ideal of R, and suppose that all of the minimal
generators of I have the same degree, say d. We say that I has a linear resolution if for all
i ≥ 1, βi,j(R/I) = 0 if j 6= i + d− 1.

Note that if I has a linear resolution, and βi,j(R/I) is a nonzero graded Betti number,
then j = i + d − 1. Using the Betti diagram, it is easy to recognize if an ideal has a linear
resolution: all the nonzero entries of the Betti diagram (except for the 1 in the (0, 0)th spot)
appear on the (d − 1)th row. The ideal IX does not have a linear resolution since it has
nonzero entries on the first and second row.

Here is an example of an ideal that has a linear resolution.

i46 : R = QQ[x,y,z,w]

o46 = R

o46 : PolynomialRing

i47 : I = (ideal(x,y,z,w))^4;

o47 : Ideal of R

i48 : betti res I

o48 = total: 1 35 84 70 20

0: 1 . . . .

1: . . . . .

2: . . . . .

3: . 35 84 70 20

Question 3.7. How do I check if an ideal has a linear resolution?

Answer. Suppose that {F1, . . . , Fs} is a minimal set of generators for I. Let d = min{deg Fi}
s
i=1.

It is not difficult to prove that I has a linear resolution if and only if reg(R/I) = d − 1.
Using this fact, the following script allows us to test if an ideal has a linear resolution.

i49 : verifyLinearRes=I->(

D = min flatten degrees I;

B = coker gens I;

R = regularity(B);

if D-1 =!= R then return (false);

return(true);

);

i50 : verifyLinearRes(I)

o50 = true

i51 : verifyLinearRes(IX)

o51 = false

4. Generic initial ideals

Let R = k[x1, . . . , xn] be a polynomial ring, and let > denote a term order. Let xα =
xa1

1 xa2

2 · · ·x
an
n denote a monomial of R, and let F = cα0

xα0 + · · · + cαs
xαs be a polynomial



13

of R. Suppose that xα is the largest monomial that appears in F under the term order >.
Then the initial term of a F with respect to > is defined to be in>(F ) = cαxα. (or in(F ) if
> is clear). The initial ideal of an ideal I is then in>(I) = (in(f) | f ∈ I). Again, if > is
clear, we omit simply write in(I).

As noted in the first lecture, if I = (f1, . . . , fr) and in(I) = (in(f1), . . . , in(fr)), then
f1, . . . , fr is called a Gröbner Basis of I.

Let GLn(k) denoted the general linear group of order n over k, i.e., all the n×n invertible
matrices with entries in k. Given a matrix g = (gij) ∈ GLn(k), and a polynomial F =
F (x1, . . . , xn) ∈ R, we can let g act on F as follows:

g · F = F (gx1, . . . , gxn) where gxi =

n
∑

j=1

gijxj .

Now fix an ideal I of R. Every matrix g ∈ GLn(k) results in an initial ideal in(g · I)
where by g · I = (g · f | f ∈ I). We say that two matrices g and g′ are equivalent if
in(g · I) = in(g′ · I). This is an equivalence relation on GLn(k), and thus the equivalence
classes partition the group GLn(k). One of these partitions is quite “large” in the following
sense.

Lemma 4.1. For a fixed I and term order >, one of the equivalence classes is a nonempty
Zariski open subset U inside GLn(k)

For each g ∈ U , the Zariski open subset, the initial ideal in(g · I) is the same ideal.

Definition 4.2. Fix a term order > on R, let I be an ideal of R, and let g be any element
of the open Zariski subset of Lemma 4.1. The initial ideal in>(g · I) is called the generic
initial ideal of I for the term order >. It is denoted gin>(I) = in>(g · I).

Roughly speaking, the generic initial ideal is the ideal we should expect if we pick a
“random” matrix g ∈ GLn(k) and form in(g · I).

Question 4.3. How do I find the generic initial ideal with Macaulay 2?

Answer. There is no Macaulay 2 command to perform this operation. However, you can use
the following “quick-and-dirty method” for getting the generic initial ideal:
--gin code from a tutorial by

--Mark Green and Mike Stillman

i52 : gin = method();

i53 : gin Ideal := I -> (

S:=ring I;

StoS:=map(S,S,random(S^{0},S^{numgens S:-1}));

monomialIdeal StoS I);

i54 : gin MonomialIdeal := I -> gin ideal I;

i55 : gin IX

2 2 3

o55 = monomialIdeal (x , x*y , y )

o55 : MonomialIdeal of QQ [x, y, z]



14

A word of caution is needed here. The program works by making a random change of
variables by picking a random matrix g ∈ GLn(k). However, every once in a while, a “bad”
choice of g will occur because we may pick a g that is outside the Zariski open set of Lemma
4.1. To observe this behavior, try running the command
i56 : apply(1..100, j-> print gin IX)

If you apply this command enough times, eventually a wrong answer appears.

We won’t say anymore about generic initial ideals here, but the next step is to show that
the generic initial ideal is an example of a Borel-fixed ideal. Since the ideal is Borel-fixed,
one can then use the Eliahou-Kervaire resolution to describe the minimal free resolution of
the generic initial ideal. See [MS] for all the details. A good reference on generic initial
ideals is M. Green’s introductory survey [G].

Suggested Readings

The following books provide a good basis for learning more about today’s material.

[BH] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathe-
matics, vol. 39, Cambridge University Press, Cambridge, 1993.

[G] Mark Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996), Progr.
Math., vol. 166, Birkhäuser, Basel, 1998, pp. 119–186.

[MS] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics,
vol. 227, Springer-Verlag, New York, 2005.

[S] Richard P. Stanley, Combinatorics and commutative algebra. Second edition, Progress in Mathematics,
vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996.

[V] Rafael H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics,
vol. 238, Marcel Dekker Inc., New York, 2001.


