Introduction

The afternoon tutorials give you a chance to play around and experiment with Macaulay 2. Each tutorial begins with some needed definitions and results and ends with a list of references. Some of the initial problems ask you to prove some simple results, to give you a feeling for the material, while other problems ask you to program some simple procedures using Macaulay 2, to help you develop your Macaulay 2 skills. The last batch of questions for each tutorial is a series of open questions, which are denoted by an asterisk. (If you come up with any ideas, we would love to hear them!)

Tutorial 1: Resolutions of edge ideals

Let $G=(V, E)$ be a simple graph, that is, a graph with no loops or multiple edges. If $V=\left\{x_{1}, \ldots, x_{n}\right\}$ are the vertices of G, by identifying the vertices with the variables of $R=k\left[x_{1}, \ldots, x_{n}\right]$, we can associate to G the monomial ideal $\mathcal{I}(G)=\left(\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\} \in E\right\}\right)$. The ideal $\mathcal{I}(G)$ is called the edge ideal of G. For example if $G=C_{4}$ is the 4-cycle, then the edge ideal is $\mathcal{I}(G)=\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}\right)$. The notion of an edge ideal was first introduced by Villarreal. Note that G can be viewed as a 1-dimensional simplicial complex where the edges are the facets. An edge ideal is a different way to associate to a simplicial complex a monomial ideal.

Among other things, in this tutorial we are interested in finding relationships between the invariants in the minimal graded resolution of $R / \mathcal{I}(G)$:

$$
0 \rightarrow \bigoplus_{j} R(-j)^{\beta_{l, j}(R / \mathcal{I}(G))} \rightarrow \cdots \rightarrow \bigoplus_{j} R(-j)^{\beta_{1, j}(R / \mathcal{I}(G))} \rightarrow R \rightarrow R / \mathcal{I}(G) \rightarrow 0
$$

and the combinatorial properties of G.
The following definitions from graph theory will be useful. A clique of size n, denoted K_{n}, is a graph on n vertices such that there is an edge between every pair of vertices. If $G=(V, E)$ is a simple graph, and if $W \subseteq V$ is a subset of V, then the induced graph on W, denoted G_{W}, is the graph whose edge set is given by $\{e \in E \mid e \subseteq W\}$. The complement of G, denoted G^{c}, is the graph with the same vertex set as G, but whose edge set is given by the rule $\left\{x_{i}, x_{j}\right\} \in E_{G^{c}}$ if and only if $\left\{x_{i}, x_{j}\right\} \notin E_{G}$. A graph G is chordal if every cycle of length $n>3$ has a chord. Here, if $\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{n}, x_{1}\right\}$ are the n edges of a cycle of length n, we say the cycle has a chord in G if there exists two vertices x_{i}, x_{j} in the cycle such that $\left\{x_{i}, x_{j}\right\}$ is also an edge of G, but $\left\{x_{i}, x_{j}\right\}$ is not an edge of the cycle. To learn more about edge ideals and their resolutions, a good place to start would be [V,HVT2].
Exercise 1.1. Let $G=(V, E)$ be a simple graph. The clique complex is the set

$$
\Delta(G)=\left\{W \subseteq V \mid \text { the induced graph } G_{W} \text { is a clique }\right\}
$$

Show that $\Delta(G)$ is a simplicial complex.

Exercise 1.2. Since the edge ideal $\mathcal{I}(G)$ of a simple graph G is a squarefree monomial ideal, the ideal $\mathcal{I}(G)$ is also the Stanley-Reisner ideal of some simplicial complex. Let Δ be the simplicial complex defined by $\mathcal{I}(G)$ via the Stanley-Reisner correspondence. Show $\Delta=\Delta\left(G^{c}\right)$, that is, the clique complex of G^{c}.

Exercise 1.3. Write a Macaulay 2 program that does the following: given a graph G, return the facets (the maximal faces) of $\Delta\left(G^{c}\right)$.

Hint. You may want to use the SimplicialComplexes package.
Exercise 1.4. An independent set of vertices of a graph $G=(V, E)$ is a subset $W \subseteq V$ such that G_{W} is the graph of isolated vertices. Show that if d is the cardinality of the largest independent set of vertices of G, then $\operatorname{dim}(R / \mathcal{I}(G))=d$.

Hint. What do the maximal (with respect to inclusion) independent sets of vertices correspond to in $\Delta\left(G^{c}\right)$?

Exercise 1.5. Explain why $\beta_{1,2}(R / \mathcal{I}(G))$ is the number of edges, and $\beta_{1, j}(R / \mathcal{I}(G))=0$ if $j \neq 2$.

Exercise 1.6. Show that if $\beta_{i, j}(R / \mathcal{I}(G)) \neq 0$, then $i+1 \leq j \leq 2 i$.
Remark. When looking for formulas for $\beta_{i, j}(R / \mathcal{I}(G))$, this result says we only need to consider a specific range of j for each i.

Exercise 1.7. When $i=2$, Eliahou-Villarreal [EV] showed that $\beta_{i, j}(R / \mathcal{I}(G))$ is given by the formula

$$
\beta_{2, j}(R / \mathcal{I}(G))= \begin{cases}\sum_{v \in V}\binom{\operatorname{deg} v}{2}-k_{3}(G) & \text { if } j=3 \\ c_{4}\left(G^{c}\right) & \text { if } j=4 \\ 0 & \text { otherwise. }\end{cases}
$$

where $k_{3}(G)$ denotes the number of triangles of G (a triangle is also a 3-cycle), and $c_{4}\left(G^{c}\right)$ denotes the number of 4 -cycles in G^{c}. Given a graph G, write a Macaulay 2 program that counts the number of triangles of G. Write another program that counts the number of 4-cycles in G.

Hint. The program BettiIJ introduced in the lectures should be helpful.
Exercise 1.8. Suppose that I is an ideal generated in a single degree, say d. Recall that we say that I has a linear resolution if $\beta_{i, j}(R / I)=0$ for all $j \neq i+d-1$ and $i \geq 1$. Fröberg [F] proved the following result: $\mathcal{I}(G)$ has a linear resolution if and only if G^{c} is a chordal graph. Using this fact, write a Macaulay 2 script that determines if a given graph G is chordal. Note that $\left(G^{c}\right)^{c}=G$.
${ }^{*}$ Exercise 1.9. When $i \geq 3$, we have formulas for $\beta_{i, j}(R / \mathcal{I}(G))$ in only some special cases. Using Macaulay 2, try to come up with a conjecture of $\beta_{3,4}(R / \mathcal{I}(G))$. Compare your conjecture with the formula in [RVT]. Try finding other formulas for $\beta_{i, j}(R / \mathcal{I}(G))$.
*Exercise 1.10. A matching of a graph is a set of pairwise disjoint edges of G. Let $\alpha^{\prime}(G)$ denote the size of the largest matching in G. Then it was recently shown in [HVT1] that $\operatorname{reg}(R / \mathcal{I}(G)) \leq \alpha^{\prime}(G)$. When $G=C_{5}$, the 5 -cycle, then the upper bound is achieved, since the largest matching in C_{5} consists of two edges, which equals the regularity. It would be interesting to find a family of graphs for which the upper bound is always achieved. Try to find a family of graphs using Macaulay 2 for which the upper bound is achieved.

Remark. If G is a chordal graph, then there is an exact formula (see [HVT1]) for $\operatorname{reg}(R / \mathcal{I}(G))$ which is less than $\alpha^{\prime}(G)$ in general, so you should limit you search to non-chordal graphs.
*Exercise 1.11. Recall that a graph is bipartite if the vertex set V can be partitioned into two disjoint subsets $V=V_{1} \cup V_{2}$, such that every edge of G has one vertex in V_{1} and the other in V_{2}. Is there a formula for $\operatorname{reg}(R / \mathcal{I}(G))$ when G is bipartite? Use Macaulay 2 to come up with a conjecture.

Remark. If G is a tree, then G is also a chordal graph, so there is formula for the regularity in this case. However, I'm not aware of any formula for the regularity when G is bipartite, but not a tree.
*Exercise 1.12. Consider the projective dimension of $R / \mathcal{I}(G)$, denoted pdim $(R / \mathcal{I}(G))$. Jacques and Katzman [JK] have shown that when G is a tree, then $\operatorname{pdim}(R / \mathcal{I}(G))$ can be computed recursively. However, I don't know of any relationship between this invariant and the combinatorial data of G. It would be nice to find some connection between the two, even for a special class of graphs (e.g. chordal).

Related References

[EV] Shalom Eliahou and Rafael H. Villarreal, The second Betti number of an edge ideal, (Hermosillo, 1998), Aportaciones Mat. Comun., vol. 25, Soc. Mat. Mexicana, México, 1999, pp. 115-119.
[F] Ralf Fröberg, On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 57-70.
[HVT1] Huy Tài Hà and Adam Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their minimal graded free resolutions, available at arXiv:math. AC/0606539.
[HVT2] , Resolutions of square-free monomial ideals via facet ideals: a survey, available at arXiv: math.AC/0604301.
[JK] Sean Jacques and Mordechai Katzman, The Betti numbers of forests, available at arXiv:math.AC/ 0401226.
[RVT] Mike Roth and Adam Van Tuyl, On the linear strand of an edge ideal, available at arXiv:math. AC/0411181.
[V] Rafael H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238, Marcel Dekker Inc., New York, 2001.

2. Tutorial 2: Componentwise linear ideals

In this tutorial, we will explore componentwise linear ideals. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n indeterminates over a field k. For a homogeneous ideal I, we write $\left(I_{d}\right)$ to denote the ideal generated by all degree d elements of I. Note that $\left(I_{d}\right)$ is different from I_{d}, which is usually used to denote the vector space of all degree d elements of I.

Recall that if I is an ideal generated in a single degree, say e, then we say that I has a linear resolution if $\beta_{i, j}(R / I)=0$ for all $j \neq i+e-1$ and $i \geq 1$. Herzog and Hibi introduced the following definition in $[\mathrm{HH}]$; a homogeneous ideal I is componentwise linear if $\left(I_{d}\right)$ has a linear resolution for all d.

Set $[n]:=\{1, \ldots, n\}$. For a nonempty subset $J=\left\{j_{1}, \ldots, j_{t}\right\} \subseteq[n]$, we define $\mathfrak{m}_{J}:=$ $\left(x_{j_{1}}, \ldots, x_{j_{t}}\right)$. In this tutorial, we will focus primarily on understanding when monomial ideals of the form

$$
I=\mathfrak{m}_{J_{1}}^{a_{1}} \cap \mathfrak{m}_{J_{2}}^{a_{2}} \cap \cdots \cap \mathfrak{m}_{J_{s}}^{a_{s}} \text { with } J_{i} \subseteq[n] \text { and } a_{i} \in \mathbb{Z}^{+}
$$

are componentwise linear. These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals (see references in [FVT1]).

Exercise 2.1. Let $d=\operatorname{reg}(I)$. Prove that if $e \geq d$, then $\left(I_{e}\right)$ has linear resolution.
Hint. See [EG].
Exercise 2.2. Prove that if I has a linear resolution, then I is componentwise linear. Show, through an example, that the converse is not necessarily true, i.e., there exist componentwise linear ideals that do not have a linear resolution.

Exercise 2.3. Let $J \subseteq[n]$. Prove that for any $a \geq 1$, the ideal $I=\mathfrak{m}_{J}^{a}$ has a linear resolution (and thus, is componentwise linear). Find a formula for all the graded Betti numbers of I.

Exercise 2.4. Consider the ideal $I=\left(x_{1}, x_{2}\right) \cap\left(x_{2}, x_{3}\right) \cap\left(x_{3}, x_{4}\right) \cap\left(x_{4}, x_{1}\right)$. Prove that I is not componentwise linear.

The following exercises will describe how to use Macaulay 2 to determine if a monomial ideal of the form (\ddagger) is componentwise linear.

Exercise 2.5. Write a Macaulay 2 script that given s subsets $J_{1}, \ldots, J_{s} \subseteq[n]$ and s positive integers, returns the ideal of the form (\ddagger).

Exercise 2.6. Write a Macaulay 2 script that given a monomial ideal I and an integer d, returns the ideal $\left(I_{d}\right)$.

Hint. How do the generators of $\left(I_{d}\right)$ relate to the generators of $\left(x_{1}, \ldots, x_{n}\right)^{d} \cap I$? Alternatively, the command truncate might be useful.

Exercise 2.7. Using the previous two exercise, write a Macaulay 2 script to test whether an ideal of the form (\ddagger) is componentwise linear.

Hint. You may want to make use of Exercise 2.1, and the script for checking if an ideal has a linear resolution given in the lecture.

Exercise 2.8. If I is generated by squarefree monomials, let $I_{[d]}$ denote the ideal generated by the squarefree monomials of degree d of I. Proposition 1.5 in [HH] shows that when I is squarefree, then I is componentwise linear if and only if $I_{[d]}$ has a linear resolution for all d.

Adapt your program in Exercise 2.7 to write a new program for the squarefree monomial case (i.e., all the $a_{i} \mathrm{~s}$ equal 1) that makes use of Herzog and Hibi's result. Using the timing command, compare your two algorithms.

Exercise 2.9. There is an alternative way to determine if (\ddagger) is componentwise linear without needing to computing resolutions (provided that the characteristic of k is zero). Conca $[\mathrm{C}]$ proved that I is componentwise linear if and only if I and its generic initial ideal gin (I) with respect to the graded reverse lexicographical order have the same number of generators. Write a new program to test that I is componentwise linear using this result. You will want to use the method to compute $\operatorname{gin}(I)$ as described in the lecture.
*Exercise 2.10. Let I be an ideal of the form (\ddagger). For what $J_{i} \mathrm{~s}$ and $a_{i} \mathrm{~s}$ will I be componentwise linear? (See [FVT1] for some known cases.)
*Exercise 2.11. Let I be an ideal of the form (\ddagger). Are there formulas for the regularity and the projective dimension of I that depend only upon the J_{i} s and a_{i} s? Note that this question is interesting whether or not I is componentwise linear.
${ }^{*}$ Exercise 2.12. Let $G=(V, E)$ be any finite simple graph on n vertices. We associate to G an ideal of the form (\ddagger) by setting $I_{G}:=\bigcap_{\left\{x_{i}, x_{j}\right\} \in E}\left(x_{i}, x_{j}\right)$. For example, if G is the 4 -cycle, i.e. G has edge set $E=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{3}, x_{4}\right\},\left\{x_{4}, x_{1}\right\}\right\}$, then $I_{G}=\left(x_{1}, x_{2}\right) \cap\left(x_{2}, x_{3}\right) \cap$ $\left(x_{3}, x_{4}\right) \cap\left(x_{4}, x_{1}\right)$. (For those of you familiar with the Alexander dual, you can show that I_{G} equals $\mathcal{I}(G)^{\vee}$, the Alexander dual of the edge ideal of G)

In [FVT2], it was shown that if G is chordal graph, then I_{G} is componentwise linear. Are there other families of graphs for which I_{G} is componentwise linear?

Given a graph G, and a vertex x_{i} of G, we can add a "whisker" to a G by adding an new vertex y_{i} and a new edge $\left\{x_{i}, y_{i}\right\}$. In [FH], it was shown that by adding "whiskers" to certain vertices of G, the new graph G^{\prime} would have the property that $I_{G^{\prime}}$ is componentwise linear. What other operations can we apply to G to make a graph G^{\prime} with the property that $I_{G^{\prime}}$ is componentwise linear?
${ }^{*}$ Exercise 2.13. Consider three subsets $J_{i} \subseteq[n]$ and any three positive integers a_{1}, a_{2}, a_{3}. Find a formula for the graded Betti numbers of $I=\mathfrak{m}_{J_{1}}^{a_{1}} \cap \mathfrak{m}_{J_{2}}^{a_{2}} \cap \mathfrak{m}_{J_{3}}^{a_{3}}$ that depends only upon J_{1}, J_{2}, J_{3} and a_{1}, a_{2} and a_{3}.

Remark. This result would have an interesting application. Let P_{1}, P_{2}, P_{3} be three points in generic position in \mathbb{P}^{n} with $n \geq 2$. After a change of coordinates, we can assume that $P_{1}=[1: 0: 0: \cdots: 0], P_{2}=[0: 1: 0: \cdots: 0]$ and $P_{3}=[0: 0: 1: \cdots: 0]$. If we take $J_{i}=[n+1] \backslash\{i\}$ for $i=1,2,3$, then $I=\mathfrak{m}_{J_{1}}^{a_{1}} \cap \mathfrak{m}_{J_{2}}^{a_{2}} \cap \mathfrak{m}_{J_{3}}^{a_{3}}$ is the defining ideal of three fat points of multiplicity a_{1}, a_{2}, and a_{3} whose support is the three generic points. An answer to this question would give us the minimal graded resolution for this fat point scheme. See [V] for case of two fat points.

Related References

[C] Aldo Conca, Koszul homology and extremal properties of Gin and Lex, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2945-2961 (electronic).
[EG] David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89-133.
[FH] Christopher A. Francisco and Huy Tài Hà, Whiskers and sequentially Cohen-Macaulay graphs, available at arXiv:math.AC/0605487.
[FVT1] Christopher A. Francisco and Adam Van Tuyl, Some families of componentwise linear monomial ideals, available at arXiv:math.AC/0508589.
[FVT2] _ Sequentially Cohen-Macaulay Edge Ideals, available at arXiv:math.AC/0511022.
[HH] Jürgen Herzog and Takayuki Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141153.
[V] Giuseppe Valla, Betti numbers of some monomial ideals, Proc. Amer. Math. Soc. 133 (2005), no. 1, 57-63 (electronic).

