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Abstract

Let E be an elliptic curve over a finite field K = F,, and n # char(K) a prime.
Then the field of n-torsion points is constructed by adjoining the coordinates of all
the n-torsion points to K. In this paper we present two algorithms to calculate the
degree of the resulting extension. The first algorithm is based upon the character-
istic polynomial of the Frobenius endomorphism; the second relies on the division
polynomials of E. We also make a comparison between the two algorithms and de-
scribe some possible improvements. As well, we explore some possible applications

for our algorithms.
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Introduction

Let E be an elliptic curve over a field K given in the Weierstrass form
E:y?*=2°+az+b.

If F is any field extension of K, then the set of F-rational points of E is denoted
by E(F), i.e,

E(F) = {(z,y) € F* | y* = 2® + az + b} U {O}

where O is the the point at infinity. A group structure can be imposed on the set
E(F) by defining an operation of addition on the points of E via the chord and
tangent method. The identity of this group is O. A point P € E(F) is called a
n-torsion point if

P+..-+P=nP=0.
%/_/

n
We let E[n] be the set of all n-torsion points in E(K), where K is the algebraic
closure of K. Suppose that for every P = (z,y) € E[n], we adjoin P’s coordinates
to the base field K. The resulting extension, Kg ,, is called the field of n-torsion
points of E. Since it can be shown that E[n] is a finite group, (cf. Theorem 1.1),
we can deduce that K , is a finite extension. Further, F' = Kg , is the smallest
extension such that E[n] < E(F).

Interest in the fields Kg , comes from the fact that these fields, or more pre-
cisely, the Galois representations described in Chapter 1, played an important role
in proving one of the great open questions in number theory, namely, Fermat’s Last
Theorem. Roughly speaking, the basis of this proof (due to Frey/Ribet/Wiles [W1i])
is to show that certain Galois extensions K of Q cannot be of the form K = Kg ,,,
thereby leading to the non-existence of a solution. In his proof, Wiles proves a weak
version of Serre’s Conjecture to get a precise overview of which Galois extensions
K/Q can be of the form K, for an elliptic curve E/Q.

5



INTRODUCTION 6

In this paper we will study the analogous problem when Q is replaced by
K =T,. In this case, Kg,, is completely determined by its degree d = [Kg, : K],
so the problem becomes one of finding what degrees d are possible. To answer
this question we need a method to compute d. In particular, we will consider the

following problem when char(K) # 2, 3:

PROBLEM 1. Given an elliptic curve E over the field K = F;, and a prime n #
char(K), determine an algorithm to compute the degree d of the extension Kg
over K, i.e., d=[Kgn : K].

In this report we present two algorithms that compute d. The first algorithm

is based upon the Frobenius endomorphism, ¢4, where ¢, is defined as
¢ E — E
(@y) = (a%y9).

If we restrict ¢, to E[n], that is, ¢4|g[n, it can be shown (Theorem 2.3) that
d = ord(¢,|g[m) in the group Aut(E[n]), the group of automorphisms on E[n].

Moreover, we use the fact (Theorem 2.12) that ¢,| [ satisfies the equation
T? —agT +q=0 (modn).

Here, agp = (¢ + 1) — #E(F;). As we will show in Theorem 2.14, in most cases
the degree d can be found using basic linear algebra. Only in the case where the
discriminant of the above equation is divisible by n do we need to turn to more
powerful machinery. We will see that in this situation we can find d if we utilize
the division polynomials of E.

The division polynomials of E form the basis of the second algorithm for com-
puting d. By factoring the nt® division polynomial of E in the ring K|[z], we show
in Theorem 3.6 that we can determine d up to a factor of 2. Then, taking the roots
z; of the division polynomial and evaluating the norms of (z3 + az; + b), we can
distinguish between the two possible values.

Our presentation will be as follows. The first three chapters present established
results that form the mathematical basis of our algorithms. Chapter 1 focuses on
the extension K ,. Chapter 2 is a discussion on the characteristic polynomial of
the Frobenius endomorphism. Finally, Chapter 3 describes the division polynomials

of E.
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The final three chapters use the results of the previous chapters to describe our
algorithms. In Chapter 4, we present our two algorithms for computing d given E, n,
and ¢ as input. In Chapter 5, we discuss the implementation of the two algorithms.
Also contained in this chapter is a comparison of the two methods. Finally, in
Chapter 6, we explore some possible uses for our algorithms. In particular, we
discuss the connection between our algorithms and the modular curve X (n). We
also discuss the possibility of using the second algorithm to compute #E(F,).

We conclude with an appendix containing a table of our results. A description

of how they were generated has also been included.



CHAPTER 1

The Field of N-Torsion Points

In this chapter, let K be a perfect field with char(K) # 2,3. Then the equation

for an elliptic curve E over this field is given by the Weierstrass form
E:y* =23 +az+b.

Further, let n be a prime such that n # char(K). The goal of this chapter is to
present some results about Kg, ,, the field of n-torsion points, that form the basis
of our algorithms. More precisely, we show that Kg , is a Galois extension of K.
As well, we show that there exists a 1-1 homomorphism from its Galois group into
GLy(ZnZ), that is, there is a Galois representation. We begin with a more formal

construction of Kg .

1. E[n] and Kg,,

Integral to the construction of Kg , is E[n], the set of all n-torsion points, i.e.,

the set of all points P € E(K) such that nP = O. The following result about E[n]

plays an important role throughout this report.

THEOREM 1.1. E[n] is a finite subgroup of E(K) of order n? and hence
E[n] = Z/nZ x Z[nZ.
PROOF. We refer the reader to [Si] I11.6.2 and III1.6.4 for the proof. O

Notice that for all n, O € E[n]. Using Theorem 1.1, we can write E[n] as

E[n] = {07 (xlayl)a sy (mmaym)}a

where m = n? — 1. Taking the coordinates {z;,y;} for every 1 < i < m, and
adjoining them to our base field K, we construct the field of n-torsion points Kg .
Explicitly,

KE,n = K(E[’I’L]) = K(mlayla D 7$maym)'

8



2. GALOIS ACTION ON THE POINTS OF E 9

It is clear that the degree d of the extension of K, is finite. Every z € K is
algebraic over K, that is, [K(z) : K] < co. By Theorem 1.1, E[n] is finite. Hence,
we are adjoining only a finite number of elements to K, each of finite degree, so

d= [KE,n:K] < o0.

2. Galois Action on the Points of F

One of the goals of this chapter is to show that K , is a Galois extension of
K. As the following proposition demonstrates, the elements of the Galois group

can be extended to act upon the K-rational points E.
PROPOSITION 1.2. Let E be an elliptic curve defined by an equation with coef-

ficients in K and let K' be a Galois extension of K.
i) For P € E(K') and 0 €Gal(K'|K ), define o (P) by

(o(z),0(y)) if P=(=,y)
0 ifP=0

UE(P) =

Then og(P) € E(K").
it) For all P € E(K') and all 0,7 € Gal(K'/K ),

(07)5(P) = 05 (E(P))

iii) For oll P,Q € E(K'), and all 0 € Gal(K'/K ),

og(P+Q) = og(P)+0p(Q)
UE(—P) = —O'E(P)
PROOF. See [SiTa], pp 186-187. O

Observe that the proposition says that every o € Gal(K'/K) can be extended
to act upon the points P € E(K'). In fact, from Proposition 1.24ii we see that the
induced map og is a homomorphism from E(K') into itself, i.e., g € End(E(K")).
Proposition 1.2i¢ allows us to claim that this is more than a mere endomorphism on
E(K'"). Each induced map has an inverse since ¢ has an inverse, so og is actually
an element of Aut(E(K")), the group of all invertible endomorphisms on E(K').

So, from Proposition 1.2, we can deduce the following:
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COROLLARY 1.3. The map
pE‘/K’KI : Gal(K’/K) e Aut(E(K'))

O OF
is a group homomorphism.

Since we have assumed that K is a perfect field, we know that the field extension

K is Galois over K. Let Gal(K/K) be its Galois group, and let
PE/K = Pp/KEK Gal(f/K) — Aut(E(K))

denote the associated map defined in Corollary 1.3. But now observe how pg, k(o) =
og acts on the n-torsion points. If P € E[n], then nP = O. So, og(nP) = O.
But then, by Proposition 1.2, we have nog(P) = O. Thus, og(P) € E[n]. So, by
restricting o to E[n], we find that the induced map is an element of Aut(E[n]),
the group of invertible homomorphisms that take E[n] to itself. So, in effect, we

have the homomorphism
PE/K,n ¢ Gal(K /K) — Aut(E[n]).

o — 0E|E[n]'

Recall from Theorem 1.1 that E[n] & Z /nZ x Z /nZ. Picking a basis for E[n] , we
have Aut(E[n]) =2 GL2(Z/nZ), the set of all 2 x 2 matrices with coefficients in
Z/nZ. To make this more explicit, suppose that P; and P, form a basis for E[n].

Then every P € E[n] can be expressed as
P =aP, +bP,
with a,b € Z/nZ. If o € Aut(E[n]), then by definition we will have
o(P) =ao(Py) + bo(P).

So, to determine o, we only need to determine where ¢ takes P; and P,. That is,

a(Pr) a1 P + ax P
O'(P2) = b1P1 +b2P2.

We can now define the following map:

T =7p,p, : Aut(E[n]) — GLo(Z [nZ)
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o~ M,

ai b
where M, = HR T U 0,7 € Aut(E[n]), then, as in basic linear algebra, we

as b2
have M,, = M,M,. From this we can show that 7 is in fact a group isomorphism.

The next theorem shows that we can use this discussion to show that there exists a
homomorphism from Gal(K/K) to GL2(Z/nZ). In other words, we have a Galois

representation modulo n called the Galois representation of E/K modulo n.

COROLLARY 1.4. Let E be an elliptic curve over K, and n > 2 be an prime.

Fiz generators Py and Py for E[n] . Then the map

pn - Gal(K/K) — GLo(Z nZ)

Pn = TpP,P, © PE/K,n
is a homomorphism of groups.

Throughout the remainder of this paper, we shall usually denote pg,k » by pn

since the two maps are equivalent, up to a choice of basis for E[n].

3. The Galois Extension Kg ,

The following result shows that K ,, the field of n-torsion points, is Galois.

As will be seen, it is a consequence of the fact that Ker(p,) = Gal(K/KEg,»).

PROPOSITION 1.5. Let p, be the homomorphism described in Corollary 1.4.
Then

Ker(p,) = Gal(K/Kg,»).

In particular, Kg ;, is a Galois extension of K.

PROOF. Let o € Ker(p,). Furthermore, let or = pg k(o). Since p,(0) =
I, € GLy2(Z/nZ), we have that og = id € End(E[n]). So, for every P € E[n],
op(P) = P. Thus, if P # O, we have (o(x),0(y)) = (z,y). Recall that the
coordinates of the n-torsion points generate K, over K. So o leaves Kg , fixed
since it acts trivially on each of the generators of K ,,. But then o € Gal(K/Kg ).

Conversely, if ¢ € Gal(K/Kg,5), then o € Gal(K/K). Let 05 = pp/k,n(0)-
Then, if P # O € E[n],

op(P) = (o(z),a(y))-
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But because z,y € Kgn, o(x) = ¢ and o(y) = y. Then og(P) = P for all
P € E[n]. In particular, if P, and P, are a basis for E[n], then og(P1) = P,
and og(P2) = P,. This implies that pg/k,,(0) = id € End(E[n]). Since 7 is
an isomorphism, we have p,(0) = 7p, P, © pg/K,n(0) = Iz, the identity matrix of

GLy(Z /nZ), thereby implying that o € Ker(p,). This completes the first part of

the proof.
Now, H = Ker(p,) is normal in G =Gal(K/K) . But by the above, H =
Gal(K/KE.y), so by Galois theory, Kg ,,/K is Galois. O

Using this theorem, we can now introduce the Galois representation of the

group Gal(Kg,,/K). For example, see [SiTa] p. 196.

COROLLARY 1.6. Let E be an elliptic curve over K and n > 2 be an prime
# char(K). Fiz generators Py and P, for E[n]. Then p, induces an injective

homomorphism
Pn: Gal(Kgn/K) = GLy(Z /nZ).

In particular, p,(0|ky.,.) = pn(o) for o € Gal(K/K).

ProoF. From Corollary 1.4, p, induces an injective map

Gal(K/K)
P Ly(Z/nZ).
Pt Rt GL»(Z/nZ)

But by Proposition 1.5 and Galois theory, we deduce that

Gal(K/K)

e = GalKea/K).

The result now follows. O

COROLLARY 1.7.

d=[Kpq: K] = |Im(p,)].

PrOOF. By Galois theory, we have [Kg, : K] = |Gal(Kg,,/K)|.- But the

result now follows from the fact that p,, is injective by Corollary 1.6. O

Remark: Before we proceed, we detour briefly to discuss the context out of
which this problem arose. As mentioned in the introduction, the origin of this

problem is based in part on Wiles’ proof [Wi] of Fermat’s Last Theorem (FLT).
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Continuing from the earlier work and ideas of Frey and Ribet, Wiles considered the

elliptic curve
E:y? =z(z —a™)(z +b"),

where a” + b" = ¢" is a counterexample to FLT. Then, by examining its field of
n-torsion points Kg , when K = Q, or more specifically, the associated Galois
representation, he derived a contradiction. The proof relied on being able to give
a (partial) characterization of those Galois representations modulo n which arise
from elliptic curves. This is essentially equivalent to the question as to which field
extension K/Q with Gal(K/Q) < GLy(Z/nZ) are of the form K = Kg .

In this paper, we have chosen to work in a setting that is much more simple
than the one used by Wiles. We restrict ourselves to K = F,, in which case
Gal(Kg,,/K) is cyclic (cf. Theorem 1.12). In this context, determining which field
extension K'/K with Gal(K'/K) are of the form K' = Kg ,, is equivalent to asking
what degrees [Kg , : K| are possible. This is because Kg ,, is uniquely determined
up to isomorphism by d, since there is only one finite field (up to isomorphism) of

given degree over K.

4. The Weil e,-pairing and Computing [Kg , : K]

In this section we describe how the Weil e, -pairing provides a partial answer
to our question of computing d. The Weil e,,-pairing is a skew-symmetric, bilinear

pairing

en : E[n] x E[n] — p,(K) = the group of n'” roots of unity of K.

Recall that as before char(K) # n, so un(K) = Z/nZ. The actual definition of
this pairing is quite involved, so we point the reader to [Si] III.8 for a thorough
treatment of this topic. We cite the following proposition which describes some of

the properties of this pairing.
PROPOSITION 1.8. The Weil e,-pairing has the following properties:
a)
en(PL+ P2, Q) = en(P1, Q)en(P2, Q)

en(P;Ql + Q2) = en(Pan)en(PJ QQ)
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e"(QJP) = en(PJQ)_l'

c) If ord(P) = n, then e,(P,Q) =1 if and only if Q = kP for some k € Z.
d) For all 0 €Gal(K/K),

en(P, Q)7 = en(a(P),0(Q)).

e) The pairing e, is non-degenerate. In particular, if P € E[n] has order n
and (p, is a primitive nt" root of unity, then there exists Q € E[n], such that

en(P,Q) = (y, and P,Q form a basis of E[n].
PROOF. See [Si] II1.8.1 and ITI.8.1.1. O

The following corollary tells us that all n** roots of unity lie in Kg p.

COROLLARY 1.9. Let E be an elliptic curve over K. Let n # char(K) and let

Cn denote a primitive n*" root of unity. Then (, € Kg 5.

ProoF. This follows from Proposition 1.8. Let P,Q € E(Kg,) be a basis
of E[n]. Then e,(P,Q) = (, is a primitive n** root of unity since e, is non-
degenerate. Now for every o € G = Gal(K/Kg,,), 0(P) = P,o(Q) = Q. Hence,
by Proposition 1.8d:

Cg = en(U(P),U(Q)) = en(PaQ) = Cn
So, ¢ is fixed by all the elements of G, which implies that ¢, € Kg . O

COROLLARY 1.10. If K = F, and d = [Kg,, : K], then ¢ = 1 (mod n). In
particular, ord(g,n)|d.

PROOF. By the previous corollary, we have ¢, € Kg, = Fa. Then n =
ord(¢a) | [Fja| = ¢” = 1. So n|g” — 1, giving the desired result. a

In the next proposition we show that if we have a point P of order n of E(K),

then we can use the e,-pairing to give us a partial criterion for finding d.

PROPOSITION 1.11. Let P = (z,y) € E(K) be a point of order n, where n is a
prime distinct from char(K). Then, K(P,(,) = Kg,n or

[KE,n : K(P; Cn)] =n.
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Proor. By Corollary 1.10, we have K (¢,) C Kg . Since P € E(K) is a point
of order n, and thus a n-torsion point, we deduce that K(P,(,) C Kg,. Then it
is enough to show:

Claim: If 0 € G = Gal(K/K(P,(,)), then 0™ € H = Gal(K /KE.y,).

Indeed, since H is normal in G (Proposition 1.5), this claim shows that G/H is a
n-group. But since G/H < Gal(Kg ,/K) < GL2(Z [nZ) whose n-Sylow subgroup
has order n, we see that [G: H| =1 or [G : H] = n.

It thus remains to verify the claim. Using Proposition 1.8e, we pick a point
Q € E(K) such that e, (P, Q) = (,. Moreover P and @ will form a basis for E[n],
thereby implying that K(P,Q,¢,) = Kg n-

Now, let 0 € G. Then

en(P,o(Q)) = en(o(P),0(Q)) since P is invariant under o € G

en(P,Q)’ by Prop. 1.8d

sz =(n = en(PaQ)-

So, we conclude that e, (P,c(Q)) = e, (P, Q), or equivalently, e, (P,c(Q) — Q) = 1.
But then by Proposition 1.8¢c, 0(Q) — @ = kP, so 0(Q) = Q + kP, with k =k, €
Z/nZ. But from this we deduce that

o™(Q) = Q +nkP = Q.

Thus o™ is fixes both P and @), and hence Kg ,, or, in other words, c™ € H. This

concludes the proof of the claim. a

If we now specialize to the case that K = F,, then it is a well know result that
[K(¢n) : K] = ord(g,n) (e.g. [LiHa] 2.47). If we know that [K(P) : K] = r, then
we can calculate d* = [K(P,(,) : K] = lem(ord(g,n),r). Then, by applying the
above proposition, we know that d = d* or d = nd*.

In order to use this fact, we need to know how to calculate [K(P) : K. Since
P is a point of order n, we need to find the smallest r such that n|#E(F;). This
implies that K(P) = F,». We remark that we can calculate #E(F,) once we
know #E(F;). If we know #E(F,), then it can be shown ([Si] V.2.4) from the zeta

function of E over F, that

(1) #EFy) =(1+4q") - (a"+0")
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where a and § are the complex roots of
T? —apT +q=0.

and ag = (14 ¢) — #E(FF;). So, we can use this proposition to compute d up to a
factor of n.

In Chapter 4 we will use this result in our second algorithm. In this algorithm
we first find a point P of order n. Or more specifically, we will find d* = [K (P, (,) :
K]. We then will compare d* to the possible values of d = [Kg 5, : K] we determined

from the division polynomials of E will be described in Chapter 3.

5. The Frobenius Automorphism

Suppose that K = F; is a finite field. As noted in Corollary 1.7, calculating
d = [KEg,, : K] is equal to the |Im(5,,)|. The question of finding d therefore can be
translated into one of finding the order of the image of p,,. In fact, we will show
that Im(p,,) is cyclic, therefore finding d is equivalent to finding the order of the
generator of Im(p,,).

Now consider the following map:
o,:F, — T,

T — zi.

It can be shown quite easily that this map is an automorphism of Fq that leaves
F, fixed, hence o, € Gal(F,/F,). This automorphism o, is called the Frobenius
automorphism. As the next theorem shows, if we restrict o4 to the subfield Fy- with

r € Z™*, then this induced map plays an important role in the group Gal(F,- /F,).

THEOREM 1.12. The Frobenius automorphism og|r,. generates Gal(F- /F,),

that is
(Uthqr) = Gal(]qu /]Fq)-

In particular, ord(oy|r,. ) = [Fyr : Fy].
PROOF. See [St]. O

COROLLARY 1.13.

d=[Kpn:K]= Ord(pn(aqlKE,n)) = ord(pn(0y)).
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PRrROOF. Let Kg,, be the field of n-torsion points. So, Kg, = Fya. Thus, by
Theorem 1.12, we have ord(oy|ky.,) = [KEn : K] = d. Since p,, is injective by

Corollary 1.6, ord(oy|ky ,) = ord(p,(04|k5.,)). The result now follows. O

This is an important corollary since our first algorithm is based upon this fact.
In the next chapter we will show that if we use some information from the ellip-
tic curve E, then we can determine the characteristic polynomial of the matrix
Pn(04lKe..) = pn(oy). From this information we can calculate d, or more specifi-

cally, the order of p,(o,) € GL2(Z /nZ) in almost all cases.



CHAPTER 2

The Characteristic Polynomial of the Frobenius

Endomorphism

In the previous chapter we saw that the problem of calculating d = [Kg ,, : K|
when K = T, is a finite field can be translated into finding the order of p,(g,) €
GLy(Z/nZ),i.e., the image of the Frobenius automorphism under the Galois repre-
sentation of E/K modulo n. In this chapter we show that we can use information
from the elliptic curve E to determine the characteristic polynomial of the matrix
pn(0q) € GLo(Z [nZ). Specifically, the goal of this chapter is to demonstrate that

the characteristic polynomial, ch,,  (,,)(T) € F,[T] is congruent modulo n to
chp,(o)(T) =T? —apT + q (mod n)

where ag = (¢ + 1) — #E(F,).

1. The Frobenius Endomorphism

Vital to this chapter is the concept of an endomorphism of an elliptic curve
E/K. Endomorphisms are actually a subset of a larger class of morphisms called
isogenies. Hence, we begin with a definition of an isogeny.

Definition 2.1: Let F; and E5 be elliptic curves over a field K. A K-isogeny

between F; and Fs is a morphism over K
¢ By — B,
satisfying ¢(0) = O.

Here, the morphism is a morphism between the two projective curves E; and Ey. We
now specialize to the case that ¢ is an isogeny from F to itself, i.e., E = FE; = Es.
Then we say that ¢ is an endomorphism. It is a fact (e.g. [Si] III.4) that if ¢
is a K-isogeny, then for any field extension F' of K we have an induced group

18
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homomorphism

¢F : El(F) — EQ(F)

or = d|r.
If ¢ is an endomorphism, then ¢r €End(E(F)).
In the next definition, we define a specific endomorphism, the Frobenius endo-
morphism.
Definition 2.2 : Let K =T, and E be an elliptic curve over K. Then (cf. [Si]
I11.4.6) there is a unique morphism, called the Frobenius endomorphism of E/K

¢, E— E

such that its action on the K-rational points is given by

(z%,y7) if P=(z,y) € E(K)

—(P) =
(¢0)&(P) o I

The action of the Frobenius endomorphism on E(K) is linked to the Frobenius
automorphism on K in the following manner. Since K is perfect in this case, K is

Galois over K. But then by Corollary 1.3 the following map exists:
pE/K : Gal(K/K) — Aut(E(K))

o 0Eg,

where o is defined as in Proposition 1.2i. In particular, since the Frobenius

automorphism o, € Gal(K /K) then

o)) = (o) = | (O =) P = () € B(E)
O if P=0.

Comparing this formula to the one above shows that the action of the Frobenius en-
domorphism on E(K) is equal to the induced map of the Frobenius automorphism,
i.e,

(¢q)?(P) = PE/K(Uq)(P)
for all P € E(K). For the remainder of this report, (¢¢)% and pg/k(0q) = (0¢)E

will be synonymous.
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In the next proposition we show that the order of the induced map ¢¢|g[,) in

End(E[n]) is equal to d = [Kg,, : K].

PROPOSITION 2.3. Let ¢4 € End(E) be the Frobenius endomorphism. Then

¢q|E[n] = pnloy)-
In particular, d = [Kg,, : K] = ord(¢q|g[n)) in End(E[n]).

PRrROOF. As noted in the above discussion, we have that the action of (¢4)% on
the K-rational points of E is equal to pg/x(0,) € End(K). Therefore, it is clear
that ¢,| e = pPE/K(04)|E[n]- But by Corollary 1.6, we have

pE/K(Uq)|E[n] = ﬁn(0q|KE,n) = pn(aq)-

The first statement now follows. The second statement is a consequence of Corol-

lary 1.13. O

If E is a curve defined over a field K, then the set Endg (E) consists of all those
endomorphisms defined over K. Endg(E) forms a ring where addition is defined

by
(¢ +9)(P) = ¢(P) +4(P)

and multiplication is defined via composition, i.e.,

(@P)(P) = ¢(¢(P))-

The proof of these facts is given in [Si] II1.3.6. The ring Endx (E) is called the
endomorphism ring of E.

To every isogeny ¢, and specifically every endomorphism, we can assign a degree
to ¢. From algebraic geometry, any non-constant morphism between two curves E
and E, is surjective, i.e., ¢(E1) = E2. (See [Ha), I11.6.8.) Thus, every non-zero
isogeny is surjective. Given any non-zero isogeny ¢ between two curves F; and F»
defined over K, we can construct a map between the two function fields K (E,) and

K(E)) as follows:

¢* : K(Eg) — K(El)

P f=Ffod
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This is injective and fixes K. Further, K (E;) is a finite extension of ¢* K (E»), i.e,
[K(E1) : ¢*K(E2)] < 0o. (See [Ha] I1.6.8 for a proof of this fact.) This leads to
our next definition in which we attach a degree to every isogeny.

Definition 2.4: Let ¢ : E; — E> be an isogeny where F; and E5 are defined
over K. Then its degree is defined as follows: if ¢ = 0, set deg ¢ = 0. Otherwise,
put

deg ¢ = [K(Ey) : 9" K(E»)]
We also call ¢ separable (respectively, inseparable) if the finite field extension in

question is separable (respectively, inseparable).

We conclude this section with a theorem concerning the degree of the Frobenius

endomorphism.
THEOREM 2.5. Let E/K be an elliptic curve over K = F,, char(K) # 2,3.
Then
deg ¢ = g-

PROOF. Recall that the Frobenius endomorphism ¢, is defined by

¢ E—E

(z,y) = (2,97

for all non-zero elements in E(K). By definition, the map

¢r: K(E) — K(E)

q

is given by
bgf = fodg = flz?y9).
Here, f € K(F), where K(E) is the function field of E defined by

_ K[X,Y]
K(E) = Quot ((F(X, Y)))

where F(X,Y) € K[X,Y] is a polynomial defining E. Since char(K) # 2,3, we can
take F(X,Y) = Y2 - X®—aX —b. Thus, K(E) = K(z,y), where y? = 23 + az +b.
Moreover, ¢; K(E) = K(z%,y?) = K(z,y)?, where the last identity follows from
the fact that g7 = g for every g € K This leads to the following extensions:
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K(z,y)

2z
5 K(z%,y?) = K(x,y)?

K(x7)
The degrees [K(z,y) : K(z)] = [K(2%,y?) : K(2?)] = 2 are a consequence of the

relation between z and y, namely, y*> = 2% + az + b and a,b € F,. The degree of

[K(z): K(x%)] is ¢ because z satisfies the monic irreducible polynomial
T9—27=0
over K (z?). But then
[K(z,y) : K(z%,y)][K(2%,97) : K(27)] = [K(z,y): K(@)][K(2) : K(z7)]
Solving for [K(z,y) : K(z9,y?)] gives us [K(z,y) : K(z?,y?)] = degg, = ¢, the
desired result. O
2. The Dual Isogeny

In this section we provide some of the tools we need to prove the main result
of this chapter. Many results of this section will only be stated, with references
given to their proofs (cf. [Si] III.6). We begin with the following theorem which
motivates our next definition.

PROPOSITION 2.6. Suppose that ¢ €EEnd(E) and deg ¢ = m # 0. Then there
exists a unique isogeny é € End(E) satisfying

$oé=[m]

where [m] = m - 1g is the multiplication by m map and 1g is the identity map of

End(E).
PROOF. See [Si] II1.6.1. O

Definition: Let ¢ €End(E). Then the dual isogeny ¢ is defined as follows. If
¢ # 0, then q@ is the unique isogeny defined in Proposition 2.6. If ¢ = 0, set ¢3 =0.
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The next theorem gives some basic properties of ¢ and its dual ¢3

PROPOSITION 2.7. Let ¢, A € End(E). Further, let deg ¢ = m. Then
a) $o¢=pod=(m

b) dod=Xod

) $+A=p+A

d) [/7?] = [n], where [n] is the multiplication by n map.

PROOF. See [Si] II1.6.2. O

Finally, for every ¢ €End(E) we define N ¢, the norm of ¢, and the trace of ¢,
Tr¢, to be the unique integers such that

[N¢] =¢od and [Trg]=¢+¢

While it is clear that N¢ € Z by Proposition 2.7a, it is not readily evident that

Tr¢ € Z. But this fact follows from the previous proposition if we rewrite ¢ + ¢; as

~ ~

¢+ ¢ 15 +¢0¢—(1p—d)(1p — 9)
lg+00d— (1 —) 1z —¢)
lg +[N¢] = [N(1g — ¢)]

[lg+N¢—N(g — ¢)]

From this we can deduce that T'r € Z, and furthermore, that

(2) Tr¢=1+N¢p—N(1g — ¢).

3. The Characteristic Polynomial of the Frobenius

Let ¢ € End(FE) and consider the following polynomial
3) fo(T) =T? — (Tr¢)T + (N¢) € Z[T].

Then, f4 factors in End(E) as

fo(T) = (T = ¢)(T - ¢)

So, ¢ and its dual, c[), are the roots of fy.
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Now consider an elliptic curve E which is defined over K. For every ¢ €
End(E), we can restrict ¢ to E[n], thus inducing an element ¢|g[,] € End(E[n]).

We thus have a ring homomorphism,
An : End(E) — End(E[n])

¢ = Gl Bn)
Moreover, this induced endomorphism ¢|gp,) will satisfy the polynomial f4 in
End(E[n]) because of the homomorphism property of the mapping A,,.
If we pick a basis of E[n], then by the same argument of that in Chapter 1
which yields a group isomorphism between Aut(E[n]) and GLy(Z /nZ), there exists
a ring isomorphism

7 : End(E[n])) = My(Z /nZ).

where Mj(Z/nZ) is the ring of all 2 x 2 matrices. Then My = 7(¢|g[n)) is a matrix
in M>(Z /nZ). As the next theorem will show, the characteristic polynomial of this
matrix My is related to the polynomial fs.

THEOREM 2.8. Let ¢ € End(E). Then the characteristic polynomial of My,

where My is defined as above, is congruent modulo n to fg
ch¢‘E[n] = chu,(T) = f¢(T) (mod n)

where, as before,

fo(T) =T? + (Tr$)T + (N¢) € Z[T].

PROOF. Let f, be the image of fg in F,[T]. We have already pointed out
that ¢|gp, satisfies fg in End(E[n]). Since there exists an isomorphism 7 from
End(E[n]) to My(Z/nZ), by the ring homomorphism properties of = we see that
My satisfies f, € F,[T]. In other words, f, annihilates M.

Let g4 be the minimal polynomial of My in F,[T]. Then g¢|7¢ in the ring
F,[T]. If g4 = f,4, then we are done since deg(gy) = 2 = deg(chnr,) and gy|chu,
by the Cayley-Hamilton Theorem, and all polynomials are monic.

Thus, assume deg(gy) = 1. (Without loss of generality, we can assume that
deg(gg) # 0.) Then g4(T) = (T — a) € F,[T], for some a € F,. But this means
that

B\ em) = [a| B[]
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or in other words, @|g[,) acts like multiplication by a on the points of E[n]. Thus
(¢—a)|gm) = 0, thereby implying that Ker(¢—a) D E[n]. Therefore, (¢—a) = [n]-¢
for some ¢ € End(E), and hence

Thus, ¢| B[n] = la]|lp[n). But now, from the definitions of the norm and trace, we
have

N¢ = ¢od=[a’] (modn)

Tré = ¢+ =][a]+][a] =2[a] (mod n)

From this we can deduce from equation 3 that

fo(T) = (T - a)?.

But since g4 and ch M, have the same irreducible factors, we have chps s = g; =

(T —a)?, so f, = chy, in Fy[T].

|

We now specialize to the case when ¢ = ¢, € End(E), is the Frobenius endo-

morphism. Then ¢, satisfies the following polynomial

fo, = T - (Trgy)T + (Nég).

in End(E) by Proposition 2.8. But by Proposition 2.7 and 2.5, we have that N¢, =

deg ¢ = ¢.
To calculate Tr¢, we use (2) to get

TT¢Q = (1+N¢q —N(1g _¢q)) =1+q—deg(lp _¢q)-

To determine the value of deg (15 — ¢,) we can use the following two results.

LEMMA 2.9. Let ¢, : E — E be the Frobenius endomorphism on an elliptic

curve E/K =TF,, and let m,n € Z. Then the map
m+ng,: E— E
is separable if and only if ¢t m. In particular, 1 — ¢, is separable.

PROOF. See [Si] II1.5.5. O
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LEMMA 2.10. Assume ¢ is separable. Then

# Ker(¢) = deg ¢
PROOF. See [Si] I11.4.10. O
Using these results, we have
THEOREM 2.11. Let E be an elliptic curve over K =TF,. Then
deg(1 — ¢,) = #E(F,).
In particular, Trgg =1+ g — #E(F,).

PROOF. Since ¢, is the Frobenius endomorphism, then ¢4(P) € E(K) if and
only if ¢4(P) = P. So E(F;) = Ker(1 — ¢,). But by the two previous lemmas we

have

#E(F,) = # Ker(1 — ¢) = deg(1l — ).

We now summarize this discussion in the following theorem

THEOREM 2.12. Let E be an elliptic curve over K = F,. If ¢, € End(E) is

the Frobenius endomorphism, then ¢, satisfies the polynomial
fo,(T)=T? —agT +q
in End(E) where ap = (1 + q) — #E(F;).
ProOOF. This follows by substituting Tr¢, = (1 +¢) — #E(F,) and N¢, = ¢q
into (3). O

If we restrict ¢ to E[n], then by Proposition 2.3, the induced map ¢,|g[, =
Pn(0q|Kp..) = pn(0q). But then the following corollary to Theorem 2.12 and The-

orem 2.8 tells us the characteristic polynomial of p,,(04|ky.,.) = Pn(dy)-

COROLLARY 2.13. The polynomial
f(T)=T?—agT +q

is congruent modulo n to the characteristic polynomial of p,(0,|ky,.) = pn(oy) €
GLy(Z/nZ).

This gives the desired result of the chapter.
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4. Towards an algorithm

By Corollary 2.13, we now know how to determine the characteristic polynomial
of the matrix p,,(04) € GL2(Z /nZ), where p,, is the group homomorphism of Corol-
lary 1.6. As the next proposition shows, from this polynomial we can determine

d = [Kg,, : K] in a large number of cases.

THEOREM 2.14. Let E be an elliptic curve over the field K = F,. Here,
char(K) # 2,3. Further, pick an odd prime n # char(K). Let py(oq) be the
image of the Frobenius automorphism in GLy(Z /nZ) where p, is defined as in

Corollary 1.6. Then d = [Kg, : K] = ord(pn(0y)) and

ch (T)=T?-argT +q (mod n)

Pn (a'q)

is its corresponding characteristic polynomial. Suppose that ch, () factors over
F, as
chy, (o) (T) = (T — a)(T - B).
Let ¢ = <@), where (=) is the Legendre symbol. Then,
e ifc=1, then a, 8 € F,, and d = lcm(ord(a,n),ord(83,n));
sifc=—1,thena,f € F2\F,,, B = a", and d is equal to the order of a € Fy ;
e ifc=0, thena=f €F, and d = ord(a,n) or d =nord(a,n).
Moreover, if n > 4q or (%) = —1, then ¢ # 0, in which case we can determine

d explicitly.

PROOF. The first statement was proved in Corollary 1.13. The second state-
ment was proved in Corollary 2.13.
Observe that a% — 4q is the discriminant of the characteristic polynomial. So,

if ¢ = 1, the first assertion follows from the fact that then ch,, (. ) factors in F,, and

pn(o
has two distinct roots, a and S, in this field. Further, @ and 8 are the eigenvalues

of the matrix p,(o,). Thus,

pn(og) ~
0 8
Notice that for ¢t € Z, then
a 0 at 0

0 B 0 pt
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So, if ¢ is such that p,(0,)t ~ I in GLy(Z/nZ) where I, is the identity matrix,
then ord(a,n)|t and ord(8,n)|t. Hence, the order of p,(o,), and consequently, the
value of d, is equal to lem(ord(a, n), ord(8,n)). This gives us the desired result in
this case.

In the second assertion, that is, if ¢ = —1, then neither o nor g8 are in F,,. So
the polynomial ch,,, (,,)(T) is irreducible in [, [z]. But because a and J satisfy this
monic polynomial of degree 2, a, € F,2. Moreover, since 3 is a conjugate of «,

we can write it as f = o™ since o, generates Gal(F,2 /F,,). Thus

a 0

0 o™

Pn (O'q) ~

But then it is clear that the order of p,, (o) is equal to the order of « in F2.
Finally, if ¢ = 0, then the discriminant a% —4¢ = 0 (mod n). In this case there

is only one eigenvalue, i.e. @ = 8 € F,. But then by the Jordan Canonical Form,

a 0 a 1
Pn(aq) ~ or Pn(aq) ~ ’
0 «a 0 «

depending upon the dimension of the eigenspace. If p,(o,) is diagonal, i.e. the
eigenspace has dimension 2, then it is clear that the order of p,(c,) is the order of
a in F,. Thus, d = ord(a,n). However, suppose that the other case occurs. We

observe that .

p(og)t ~ a 1) _ ot tal”

0 «a 0 af
for all t € Z. Letting t = n, we find that p,(0,)? is a diagonal matrix with a’s along
the diagonal since p,,(,) € GL2(Z /nZ). Further, this is the smallest value of ¢ that
will give us a diagonal matrix. The order of p,(co,)* will then be ord(a,n). Thus,
the order of p,(o,) must be nord(a,n) which in turn implies that d = nord(a,n).
To prove the last statement, we use the following fact first proved by Hasse (see

[Si] V.1.1), namely,

(4) las| < 2v/q

2
So, if n > 4q, then n > |a% — 4¢|, from which it is clear that ([‘ET_M) # 0. Thus,
the last case cannot occur. Similarly, the last case cannot occur if (%) = —1 since

2
<aET_4q) = 0 implies that the opposite is true, that is, g is a square modulo n.
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|

COROLLARY 2.15. Let E be an elliptic curve of K and let d = [Kg,, : K],
where, as before, n # char(K). Ifc = (#), then we have the following relations
between d and n:

o if c =1, then d|(n —1).

e if ¢ =0, then djn(n — 1).

e if c = —1,then d|ord(g,n)(n + 1)|n? — 1

In addition, we always have ord(g,n)|d.

PROOF. The first two assertions are easy to see from Theorem 2.14 since
ord(a,n)|n — 1 for all & € F,,. To prove the third statement, we note that since
(#) = —1, d is equal to the order of a € F,2, where « is one of the roots of
the characteristic polynomial. Let g be a primitive (n? — 1)t* root of unity. So,
a = gt for some t € Z. Moreover, from Theorem 2.13 we have aa™ = q € F,2. Let

b = ord(g,n). Then

(gt)(H—n)b — C¥(1+n)b — (a(1+n))b — qb - 1.

Since d is the order of g¢, we have d|ord(q,n)(n + 1).

The last assertion was proven in Corollary 1.10. |

In Theorem 2.14, the value of ag does not determine d completely in the case

¢ = 0. However, in many cases, the following criterion allows us to determine d.

PROPOSITION 2.16. Let E be an elliptic curve over K and let
f(T)=T?-agT+q= (T -6)(T )

be the factorization of f(T) in C[T]. Suppose that a% — 4q = 0 (mod n). Then
f(T) has repeated root a modulo n, and put d* = ord(a,n). Then, if

n?{1+4q% — (0% +47)
thend = [Kg ., : K] = nd*.

ProOF. We know from Theorem 2.14 that d = d* or d = nd*. Suppose that
d = d*. Since E[n] is a subgroup of E(F, 4+ ), we must have

n?|#E(F,a ).
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Recall from Chapter 1.4 that #E(F 4+ ) is given by equation (1), that is,
#EF,er) = (1+47) = (6% +9%).

(It should be clear that the right side is an integer since § and ~ are conjugates.)
But now, by hypothesis, we can deduce that n? { #E(F,a- ), providing us with a
contradiction. This implies that d = nd*.

O

Unfortunately, this is not an if and only if statement. We provide a counterex-
ample to the converse in Example 4.2. In the next chapter we present the division
polynomials of an elliptic curve E. In Chapter 4 we describe a method by which we
can determine d when a% —4¢ = 0 (mod n) and Proposition 2.16 fails to determine

d.



CHAPTER 3

The Division Polynomials of an Elliptic Curve

Let E be an elliptic curve over the field K with char(K) # 2,3. Thus, E can
be written as

E:y?=2%+azx+b.

where the discriminant A = —16(4a® — 27b%) # 0. It is well known that we can
define an operation of addition on the points P € E(K) by using the cord and
tangent method. We can construct explicit formulae for the addition of two points,
P, = (z1,y1) and P> = (z2,y2), which depend only on a,b, 21, x2,¥1, and y5. These
formulae, though not difficult to describe, are somewhat messy and involve several
cases. Those interested in these formulae are recommended to check out [Si], I1.2.3.

In this chapter we will describe the division polynomials of an elliptic curve
where E is given as above. We will construct an explicit formula for [n], the
multiplication by n map, i.e.,

P — <¢H<P) | wn(P)) |
Vi (P) ¢35 (P)

where ¢,,,wn, and 1, are polynomials in the coordinates of P = (x,y). From this

explicit expression we can determine the z-coordinates of the n-torsion points, thus

providing us with a partial solution to our problem.

1. The Division Polynomials

The division polynomials v, € Z[a,b, z,y] are defined inductively as follows:

b1 = -1, go=0, =1 Py=2
¥s = 3z +6az® + 12bz — a®
Yy = 4y(z® — saz? + 2002° — 5ax? — 4abx — 8b* — a®)
Un =oms1 = Vmpathd, — /(melz/;?n+l7 m > 2
hn = 2om = PmPmi2¥imo1 = Pm2¥ii), M3,

31
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The fact that ¥, is a polynomial follows from the next lemma.

LEMMA 3.1. Let ¢, be the nt" division polynomial. Then
2:1/’&27” = 4y2F2m; if n=2m
¢2m+1 = By, fn=2m+1

where Fay, and Fop i1 are polynomials in Z[a, b, z,y?. In particular, 1, € Z[a,b,z,y]
if n even. Further, if n is odd, then 1, € Z[a,b,x,y%, and (2y)~ ", € Z[a,b, z,y]

if n is even.

PRroOOF. For the base cases n = 1,2,3, and 4, the statement holds trivially.
Thus, assume n > 5 and that the result holds for all £ < n. We demonstrate the
statement’s validity for ¢,,.

If n is odd, then
b = Pomt1 = P2ty — Dn1Pi -
By the inductive hypothesis, if m is even,
$n = 2Fn42(29)*Fa — Fr 1 Foyp
= 16y*FpoFs — Fnoi Fo .
But then, since Fyq2, F3,, Frn_1,F3 | € Zla,b,z,y%, it is clear that
Fp = Fopny1 = 16y* oo — Fry 1 F2 1 € Za, b, 2,97

The case for m odd is similar.

If n is even, then
2y1Zn = 23}12;2711 = 'Lz;m(&m+2d;$n—1 - ’&mfﬂzfn-}l)

Again, there are two subcases, m odd and m even. We do only the first case. By

induction
Zy"Zn =Fy (Fm+2 (4y2)F’3L71 - Fm—2(4y2)F72n+1)
After rearranging,
2:‘/1;71 = (4y2)Fn = (4y2)[Fm(Fm+2F3171 - m*2Fr2n+1)]

It is clear that F,, € Z[a, b, ,y?], thus completing the proof. a
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We now connect this discussion with our elliptic curve E : y?> = 23 + az + b
over the finite field K = F,. The n'" division polynomial v, of E is formed by
substituting the coefficients a and b into ¥, (a,b, z,y). So ¢, € K|[z,y]. Moreover,
we substitute 2 + az + b for y2 in 1, (z,y). Notice that once we do this, 1, is no
longer a polynomial in K[z,y] because we have introduced relations between the

indeterminates. In fact,

¥n € K[z,y] = Klz,y]/(f(2,9))

3 —az — b. In fact, for the remainder of this chapter, we

where f(z,y) = y?> — =z
assume that an elliptic curve E has been given and the appropriate substitutions
have been made. That is, we will consider ,, as an element of K[Z,y]. But now
applying Lemma 3.1 it is clear that v, € K[z] if n odd, and (2y)~!4,, € K[z] if n is
even. In fact, we can consider both polynomials as polynomials in the indeterminate
z since K[T] = K|z].

Now define the following polynomials ¢,, and w,, by

¢n = SL’@[J?L - ¢n+1wn71

dyw, = ¢n+2¢121—1 - ¢n—2¢121+1'

Using the above discussion, it is clear that ¢, € K[z] for both n even and n odd.

In the next lemma, we describe the behavior of ¢, and 2 as polynomials in K|z]

LEMMA 3.2. Let ¢, and 2 be defined as above. Then ¢, and 2 are both

polynomials in K[z]. Furthermore, as polynomials in x

on(z) = a™ + lower order terms

2
Y2(z) = n®z™ '+ lower order terms

PRrROOF. The first statement follows directly from the previous lemma. Fur-
thermore, the behavior of ¢, () is a direct consequence of the behavior of ¥2(z).
Thus, we prove the theorem only for 1)2.

The result holds trivially for the base cases n = 1,2,3, and 4. Suppose that
n > 4. If n is even, then n = 2m. Hence,

'(pm (¢m+2¢72n—1 - "pm—2¢?n+1)

wn = w2m = 2y
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Squaring both sides gives us

2 _ w?n,( 3n+2¢;1n,—1 - 2¢m+2¢m72¢72n—1¢72n+1 + wfn—2¢$n+1)

(st " ‘
By induction
(5) P2t L = (m+2)%(m— 1) met T
(6) Yrmiathm 202 04 = (m+2)(m—2)(m—1)%(m+ 1)z +2 4 .
m Bt = -2 D

Using (5), (6), and (7), we can rewrite 12 as

02 = 16m2ztm*+2 4
n 4y2 :

Since y? = 23 + az + b € K[Z,7y] and ¢2 € K[z], we can simplify the above to
2 = 4m®z>™* 1 1 lower order terms

as desired.

The proof for n odd is similar in style and content, so we omit it. |

As the next theorem shows, the multiplication by n map can be defined in

terms of ¢y, wn, and 9,

THEOREM 3.3. Let P = (z,y) € E(K). Then,
n|P = ,
e = (S e
PrOOF. We refer to an analytic proof using elliptic functions given in [Lal]

I1.2.1. The proof there is done for all fields K where char(K) # 2, 3. O

2. The n-torsion Points

In this section, we connect the division polynomial #,, to the n-torsion points.
From the next proposition, we can deduce that the z-coordinates of the n-torsion
points are the roots of ,,.

PROPOSITION 3.4. The polynomials ¢,, and 12, viewed as elements of K|[z],
are relatively prime if A = —16(4a® + 27b%) # 0. (The number A is called the

discriminant of E).

PROOF. Again, see [Lal] IL1.2.3 for a proof of this fact. O
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We need the restriction that A # 0 because we can find polynomials f, g € K|z]
such that

fon— gt = A

For example, in the case that n = 2, then
16(322 — 4a)p2 — 4(32° — baz — 27b)y3 = A

where a and b are the coefficients of the elliptic curve E. An important corollary
of this proposition, combined with the explicit formula for [n], is that the division
polynomials provide us with a means to find the z-coordinates of the n-torsion

points.

COROLLARY 3.5. If P = (z,y) € E(K), then
[n]P = O if and only if 2(z) = 0.

ProOF. By Theorem 3.3, we see that the z-coordinate of nP is given by

ro(z) = ig Eﬁ € K(z). (The fact that these are polynomials in strictly in z follows

from Lemma 3.2.) Thus nP = O if and only if r,,(z) has a pole at z. Since ¢, (z)
and 12 (z) are relatively prime by Theorem 3.4, the rational function r,, has poles

at z if and only if ©2(x) has a zero at . The result now follows. O

3. Using ¢, to find [Kg, : K]

As we have just seen, from the division polynomial %, we can find the z-
coordinate of the n-torsion points. Supposing that n is odd, then 1, is a polynomial

in 2. If we now suppose that K = F, and factor v, over F,[z], we get

bn=Fie Sy

where each f; is irreducible in F,[z]. We also notice that the f;s are distinct. This
follows from the fact that there are n? — 1 torsion points of the form P = (z,y).
Moreover, there are only two P € E[n] that will have z has its z-coordinate because

of the relation y? = 23 + ax + b. Since 1,, has degree "22’ L by Lemma 3.2, then it

n?-1

has 3

roots in F,, But each root must be of multiplicity one because each root
x corresponds to the z-coordinate of a n-torsion point. If there were a root x of
multiplicity greater than one, there there would be less than n? — 1 n-torsion points

of the form P = (z,y), which cannot be true.
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As demonstrated in the next proposition, we can determine d = [Kg, : K] up
to a factor of 2 from the way 1, factors in Fy[z].

THEOREM 3.6. Let n be an odd prime. Also, K = F, with n # char(K).
Suppose that 1y, factors in K[z] as above. Let d; = deg(f;) and l = lem({d;};_;).
Let Ky, = K(21,%2,...,Tp2_1), where the z;’s are the z-coordinates of the n-
torsion points. Then

(K, K] =1
Furthermore, [Kg,n : Ki ,| =1 or 2; alternatively, d =1 or d = 21.

PrROOF. We begin by noting that v, is a polynomial in x since n is odd. From
Corollary 3.5, we know the roots of 1, are precisely the z-coordinates of the n-
torsion points. Thus, K, is the splitting field of ¢, over K. Since K is a finite
field [K ,, : K] is equal to to the least common multiple of the degrees of v,’s
irreducible factors over K, i.e., [Kf , : K] =1.

To prove the second claim, suppose that Kg , # K }5’”. Then there exists some
x; such that

yi=\/2} +az; +b¢ K, =F,.
But then KT, ,(y;) = Fy2r, and every element of z € F: has a square root in Fya: .
In particular, all y; € Fyz:. Thus, in this case [Kg , : K}J’n] =2.
Since d = [Kg,n : Ki ,|[Kf ,, : K], it is apparent that d = [ or d = 2. a

As we see from this proposition, we once again have a partial solution to our
problem. Solely from the division polynomial, we can determine d = [Kg,, : K]
up to a factor of 2. In the next chapter we describe two algorithms to calculate d.
Both algorithms utilize the division polynomial 1), to calculate d. But as we will
see, the importance of 1), varies between the two methods. In the first method, v,
will only be computed in the special case that a% —4g = 0 (mod n), whereas in the
second method, 1, will be computed in all cases. In fact, the second algorithm is
a continuation of the discussion of this chapter. Specifically, we present a method

to distinguish between the two possibilities, d =1 or d = 2.



CHAPTER 4

Two Algorithms for Computing [Kg, : K|

So far we have presented only partial solutions (Theorem 1.11, Theorem 2.14,
and Theorem 3.6) to the problem of calculating d = [Kg,, : K|. However, in
this chapter we describe two algorithms which combine these solutions to compute
d =[Kg,, : K]. We assume that the following information has been provided:

e ¢ =p", where K =TF,, and char(K) =p # 2,3.

e n, a prime such that n # char(K) and n > 3.

e g and b, the coeflicients of the elliptic curve E over K in Weierstrass form.
Both algorithms are a function of n, ¢, a and b. The algorithms are an amalgamation

of our previous partial solutions.

1. Algorithm 1

Algorithm 1 is based upon the results of Chapter 2 and 3, in particular, Theo-
rem 2.14 and Theorem 3.6. Recall from Theorem 2.14 that once we know ag, and
if (@) # 0, then we can determine d = [Kg,, : K|. If (ai“—;‘lq) = 0, then by

Theorem 2.14, the characteristic polynomial of p,(0,) € GLy(Z [nZ), i.e.,
chy (o) = T? —apgT +q (mod n),

has a repeated eigenvalue a. Then, we know that d = nord(a,n) or d = ord(a,n).
Furthermore, Proposition 2.16 allows us to distinguish d in some cases. However,

by using the factorization of ¢, in K[z], i.e.,

Y= fr-- fr,

then we can distinguish between the two possibilities in all cases as exhibited in the
following lemma.

37
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LEmMMA 4.1. If (a%—:lq) = 0, then put | = lem({deg(fi)};_;) and let d* =
ord(a,n). Then

g d* ifd* =1 ord* =2l
nd* otherwise.

ProoOF. From Theorem 3.6, we know that d = [ or d = 2l. Suppose that
d* =1. Then if d = nd*, then [ # d and 2l # d since n is an odd prime. So, d = d*.
Similarly suppose that d* = 2I. If d = nd*, then [ # d and 2l # d. So, d = d*.

Now suppose that d* # [ and d* # 2I. Then d # d* since d =1 or d = 2[. So,
d = nd*. O

By applying this lemma, that is, by using the division polynomial v,, we can
determine d in the case that a% — 4¢ = 0 (mod n). We now have an algorithm to
compute d. We summarize below.

ALGORITHM 1. Suppose that a,b, q, and n have been given.

1. Compute ag = (1 + q) — #E(F,;) by computing #E(F,) (Sec. 5.1)
2. Let c = (@), where (;) is the Legendre symbol.
3. Ifc=1, thenT? —agT + q= (T — a)(T — B) (mod n), where a # B € F,,
and
d = lem(ord(a, n),ord(8,n))
else if c = —1, then T? —apT + q = (z — a)(z — a™) € F,2, and
d = order of a in ]F‘Z2.
else ifc=0, then T?> —agT +q= (T — a)®,a €F,. Then
1. d* = ord(a,n).
2. T? —agT +q = (T - 6)(T — v) € Clz].
3. Ifn?|(1+q¢%) — (8¢ —~%") then
Construct ¥y,.
Factor vy, in Fy[z].
Let | =lem({deg(fi)}i_,) where ¢¥p, = f1--- fr.
if d* =1 or d* = 2l then
d=d".

Ll

else
d = nd*
end if
else
d = nd*
end if
end if
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As we can see, fundamental to Algorithm 1 is ag. By definition, computing ag
is equivalent to computing #E(F,). However, computing the number of points on
an elliptic curve over a finite field K = F,, even when ¢ = p, is a non-trivial matter
for large p. Since the appearance of R. Schoof’s ground breaking paper [Scl] on
this topic, much work has gone into this question. For a nice expository paper on a
variety of methods to compute #E(F,) one is recommended to check out another of
Schoof’s papers [Sc2]. In this second paper, Schoof claims that for prime p < 200, a
simple brute force method of counting points on the curve is efficient. For p > 200,
a less naive method must be used. Hence, to use Algorithm 1 for large p, one will
need to first implement an efficient algorithm for computing #E(F,).

If n is large compared to g, we note that Theorem 2.14 says that we can deter-
mine d solely from the characteristic polynomial without recourse to 1,. Specifi-
cally, if n > 4q or if (£) = —1, then the problem case will not occur.

We conclude our discussion of Algorithm 1 by providing an example of two
curves with the same ap and a% — 4¢ = 0 mod n, but the degree of their field of
n-torsion points differ by a factor of n.

Example 4.2: Let B, :y2 =2 +2and Ey : y2 = 23 + 62+ 2. Also, let ¢ = 7,
so K =y, and n = 3. Then, by counting the number of K-rational points on each
curve, we find that ag = —1 for both E; and E5. So, the characteristic polynomials

are equal modulo n, that is

Ch'p(aq,E1)(T) = Chp(aq,Ez)(T)

(T —a)® modn

1l

Both matrices have repeated eigenvalues since (GQEH;M
a = 1 (mod 3), since a® = ¢ (mod 3) and ¢ = 1 (mod 3). Since ord(a,3) = 1,

then [Kg, 3 : K] =1 or 3 by Theorem 2.14. Similarly for [Kg, 3 : K]. Forming the

) = 0. In this example,

3-division polynomials for each curve and factoring over F,[z], we get

Y3, B, = 3zt + 24z

z(zx+4)(x+2)(x+1) (modT7),
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and

V3, B, 3zt + 3622 + 24z — 36

= (z+1)(32° +42° +424+6) (mod 7).

From 3 g, we deduce that [Kg, 3 : K] = 1. Moreover, from 3 i, we see that
[Kg,3: K]=3.

Observe also that the curve Es : y? = 23 + 6z + 2 is a counterexample to the
converse of Proposition 2.16. Since ag, = —1, we can deduce that 3% | 9 = #E(F,).

However, d # 1, but d = 3, as we have just shown.

2. Algorithm 2

Algorithm 2 is a continuation of the discussion begun at the end of Chapter
3 where we showed that if ¢, = f1--- f, in K[z], then d = [ or d = 2I, where
I = lem({deg(fi)}i—;)- To determine if d = [, we need to show that for every
z; € K such that z; is a root of ¢2, then y; = /23 + az; +b € Fpu. If there is
some x; where y; & Fy, then y; € Fy2r, implying that d = 21.

Thus, to distinguish between d = I and d = 2I, we need to check whether
z® 4+ az + b is a square in F,:, where z is a root of 1),,. In the next definition, we
define a function analogous to the Legendre symbol for arbitrary finite fields.

Definition 4.3: Let K = F,, and = € K. Then the quadratic character (&)

is defined as follows:
1 if 3y € K such that 42 =z
(i) =4 —1 if dy € K such that y> ==z
0 ifx=0.

So, to distinguish between d = [ and d = 2I, we need to evaluate

xf +ax; +0b
F,

for each root z; of 2. Recall from Theorem 3.6, d = 2I if there exists at least one

z; such that y; ¢ F,:. So, to determine d, we need to determine if all y; € F:.
However, we notice that z; is the root of some f;, where f; is an irreducible

factors of ¢, in K[z]. Let d; = deg(f;). Then y? = 2} + az; + b € F4; since

fi is the minimal polynomial of z; over K. If 2d;|l, then all the z € F 4, have a



2. ALGORITHM 2 41

square root in Fy:. So, in particular, y; € F:. Thus, if z; is the root of f; such that
2d;|l, then y; € Fyi. So, we need only consider all ; such that z; is the root of an
irreducible factor f; such that 2d; t . It is clear that such a factor will exist since
I = lem({deg(f) }iy)-

In next lemma, we show that we can find d if we consider only one irreducible
factor f; of 4, such that 2d; { I. Moreover, this result uses the partial solution of

Theorem 1.11

LEMMA 4.4. Let f; be an irreducible factor of v, such that 2d; 11, where d; =
deg(f;). Put d* =lecm(ord(q,n),d;) and c = (M), where fi(z;) = 0. Then,

]qui

p I ifec=1 andd*|l
21  otherwise.

PRrOOF. Recall that d =1 or 2[ and that ord(q,n)|d. Then, if d* {1, then d # [,
so d = 2l. Similarly, if ¢ = —1, then by the definition of the quadratic character,
Yi ¢ Fya;, thus implying that y; € F2q¢;. Since y; € Kgn = Fya, then 2d;|d. But
2d; t1,s01 # d, hence d = 2.

If ¢ = 1 and d*|l, then P = (z;,y;) € Fa;, so Fa» = K(P,(,). Thus, by
Theorem 1.11, d = d* or d = nd*. Then if d = 2I, either 2] = d* or 2] = nd*. But
in both case, d* 1. Thus, d =1. O

Notice that this proof makes implicit use of the fact that n > 3. We now have
a way to determine d from the way the division polynomial factors by using this
lemma. We now explicitly write out our algorithm.

ALGORITHM 2. Suppose that n,q,a, and b have been given.

1. Construct iy,.
2. Factor v, = f;--- fr into its irreducible factors over Fy[z]
3. Calculate | = lem({deg(fi)}i—y)-
4. Pick an f;, where 2deg(fi)11.
5. Calculate ¢ = zs}ai:’% where d; = deg(f;) and x; € K is a root of f;.
6. If c = —1 then
d="2l.
else

Put d* = lem(ord(g,n),d;).
if l =d* orl =nd* then
d=1.
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else
d=2l.
end if.
end if.
An immediate problem one will encounter when trying to implement Algorithm
2 is the factorization of ¢, in F,[z] in Step 2. By Lemma 3.2, we know that 2

behaves like

« 2
Y2 = nz™ ~! + lower order terms

as a polynomial in z. That is, the degree of the division polynomials grows like n2.
Thus, Algorithm 2 would seem suited for small n. Compare this to Algorithm 1
which works well for large n compared to ¢. In the next chapter we will provide
a more detailed comparison of the algorithms for various n and ¢ when ¢ = p is a
prime.

In the next chapter, we discuss in more detail the computation of (%‘:”)
of Step 5. We will see in Proposition 5.2 that quadratic residues in a field exténsion
can be related to quadratic residues in subfields. We will also look into the imple-
mentation of these algorithms when K = F,. As well, we consider the question of

computing d for all elliptic curves over the finite field F,. For now, we conclude

this chapter with a brief discussion concerning the case n = 2.

3. [Kg,,: K] when n =2

In the preceding, we avoided the discussion of the case n = 2. This is not
because this case is more difficult than when n > 3. In fact, rather the opposite is
true. Recall that a 2-torsion point is a point P such that 2P = O, or alternatively,
P = —P. But now if Q = (x,y), then —Q = (x,—y). This implies that P is a
2-torsion point if and only if y = 0. Hence, the z-coordinates of the 2-torsion points

are merely the roots of
y=+Va®+ax+b.

Notice that agrees with our criterion of Corollary 3.5 that the z-coordinates of the

n-torsion points are the roots of v, since 1y = 2y.
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There are three ways in which f(z) = 23 + az + b factors over K = F,. First,

all three roots are in K, that is,
2 4+ar+b=(z—e)(x —e)(x —e3).

In this case, E[2] < E(F,), that is, d = 1. In the second case, only one root is in
K. But then

P +ar+b=(r—e)(@®+sz+1).
Then, Kg» = Fp2. In the finally case, f(x) is irreducible. But then Kg o = Fys.
Thus, the case n = 2 is ignored in this project since the solution is relatively straight

forward.



CHAPTER 5

Implementing the Algorithms

In this penultimate chapter we describe the implementation of the two algo-
rithms described in Chapter 4. In particular, we discuss the implementation when
K =F,. We describe some methods that will decrease the run time of the algo-
rithms. As well, we point out some possible problems one may encounter. We also
compare the running time of the two algorithms for various n and p. Finally, we
discuss the problem of computing the degree d = [Kg,y, : K] for all elliptic curves
over K =TF,.

Remark: We emphasize the fact that the algorithms we implemented assume
that K = IF,. While the algorithms are true for K = F,~, implementation be-
comes difficult since we need to utilize the arithmetic of F,-. Furthermore, both
algorithms were implemented in Maple V Release 4 on a Packard Bell Pentium /66
using Windows 3.1. Since some of the discussions of the chapter hold for ¢ = p",

we continue with this generality, specializing to p only when necessary.

1. Implementation of Algorithm 1

As noted in Section 4.1, one of the major stumbling blocks of this algorithm is
the computation of ag, or equivalently, of #E(F,;). If E is an elliptic curve over F,

given in Weierstrass form, i.e.,
E:y?>=2%+az+0b,

then for every = € F,, there exist either 0,1, or 2 solutions for y. The number of
solutions of y is determined by

1+ (:173+a:17—+-b>7
I,

where (F—) is the quadratic character defined in Definition 4.3. In the case that

q = p, then the symbol on the right is the well known Legendre symbol. As Schoof

44
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points out in his paper [Sc2], if we sum the above expression over all z € Fg,
remembering to count the point at infinity, we have
HEFE,)=1+q+ > (%) .

z€F, ?

From this, we deduce that
z° +ar+b

® = L)
Hence, to calculate ag, one can use the above expression.

In the case that ¢ = p and for p > 200 there do exist more efficient algorithms.
For a variety of methods, see [Sc2], [Scl], and [At]. However, for this paper we
have stayed within this bound, i.e., we have chosen to work with primes p < 200.
In this context, this brute force method is efficient enough for computing ag. To
further increase efficiency, we first compile a table of a squares modulo p. Then, for
each 2 =0,1,...,p — 1, we check if 3 + azx + b is in this list. As Schoof claims in
[Sc2], this provides us with an algorithm with a running time of O(p'*¢) for every
€ > 0. For those who wish to deal with the problem of calculating d when p > 200,
it will be first necessary to implement a quicker method for counting #E(F,). Our
implementation of Algorithm 1 makes use of (8) to calculate ag.

We also consider the case that (@) = —1. As was shown in Theorem 2.14,

under this hypothesis d is equal to the order of a € F,2, where a is a root of
f(T)=T?+agT +q (mod n).

Of course, to calculate the order of a we need to first construct F,2 and identify «
with an element in this field. To construct F,2, we use the fact that f is irreducible

in the ring F, [T]. Hence
F. [T]
F,2 = .
B ©))

Since f(a) =0 (mod n) we have T' = a (mod f). So, we need to discern the order

of T in F,[T]/(f), i-e., find the minimum of all d such that 7% = 1 (mod f). In

our implementation, we have used GF, the finite field Maple package to calculate d.
We observe that Algorithm 1 relies on 9, to distinguish between the two pos-
sible values for d in the case that a% —4¢ = 0 (mod n). As noted in Lemma 3.2,

1¥n is a polynomial of degree # This is unfortunate since this implies that the
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degree grows at very rapid rate. The question arises if there are any alternatives
t0 Yp,.

The answer to this question is yes. The modular equation ®,(S,T) € Z[S,T)
where 7 is prime is a possible candidate for an alternative to v,. The modular

equation is a symmetric polynomial which is equal to

®,(8,T) = S™ — S"T™ + T™*! + lower order terms,

where the lower order term are of the form S*T7 with i,5 < n and i +j < 2n. The

modular equation also satisfies

8,(S,T) = (S* —T)(T — S™) (mod n).

This relationship is called the Kronecker congruence relation. Let E be an elliptic
curve over K = F, and suppose that the j-invariant is such that j # 0,1728.
Substituting j for S in ®,(S,T), we a get a new polynomial ®,(4,7) which is a

polynomial strictly in 7" and of degree n + 1. Moreover, we have

PROPOSITION 5.1. The polynomial ®,(j,T) splits completely in Fp- [T] if and
only if pp(og)" acts as a scalar matriz on E[n)] in GLy(Z /nZ)]+1= PGLy(Z|nZ).

PROOF. See [Sc2] 6.1. O

But now consider how this proposition can improve Algorithm 1. In Algorithm
1 we use ¥, to determine if p,(04) is similar to a diagonal matrix or not. But
by Proposition 5.1, if ®,,(4,T) splits in F,[T], then p,(0,) acts as a scalar matrix
on E[n] in PSLy(Z/nZ), or in other words, the dimension of the eigenspace is 2.
Notice that there will be a marked improvement in the algorithm since the degree
of @,(j,T) grows at a linear rate.

Unfortunately, while using the modular equation will increase the running time,
no nice method exists for constructing @,(S,T). Unlike 1), there is no recursive
definition for ®,(S,T). Another problem with this polynomial is that the coeffi-

cients have a tendency to become very large. For example, consider the modular



2. IMPLEMENTATION OF ALGORITHM 2 47

equation ®,(S,T) with n = 3:

®3(S,T) = S*+ 83T + T +2232(S°T?% + T35?)
—1069956(S3T + T2S) + 36864000(S> + T3)
+25879180865%T2 + 8900222976000(S>T + T2S)
+452984832000000(S? + T?) — 770845966336000000ST

+1855425871872000000000(S + T').

Of course, we only need to calculate the coefficients modulo p. For a discussion of
the problem of computing these coefficients over Z, see Yui’s paper [Yu]. Whether
®,,(S,T) presents a viable alternative to v,, remains to be seen. Further, one may
ask whether there exist other polynomials that can be used to distinguish between

the two possible values of d.

2. Implementation of Algorithm 2

Suppose that 1, is the nt" division polynomial, and that v,, factors in F, [z] as

'(pn:fl"'fr-

If d; = deg(f;) and ! = lem({d;}]_;), we know from Theorem 3.6 that d = I
or d = 2]. In Algorithm 2 we distinguish between these two possibilities. If f;
is an irreducible factor such that 2d; t I, then this distinction boils down to the

computation of

T} +az; +b
© ().

where f;(z;) =0 and
Fy |z
]qui o 11[ ]
(/)
Here, (W) is the quadratic character. This section describes how one evaluates
q%i
this expression.
As remarked at the end of Section 4.2, but not proved, quadratic residues in a

field extension can be related to quadratic residues in subfields. We now prove this

statement.
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PROPOSITION 5.2. Let H D F be finite fields of characteristic p # 2 and
[H:F]l=m. Letx € H. Then

) - ()

where Ny /i () = x> is the norm of x. Here, ¥ = q;n:ll, where ¢ = |F|.

PROOF. This result is based upon Exercise 1.12 in [Sm]. Suppose that (&) =
1. Then there exists y € H such that y* = z. But then Ny, p(2) = Ny p(y®) =
NH/F(y)2. Since Ng/r(y) € F, we must have (NH/TF(”) =1.

Ny, r(z)
F

Conversely, suppose that ( ) = 1. Let z = g%, where g is a primitive

element of H. We want to show that t is even. Since (NH/TF(QC)) = 1, there

™

exists y € F such that y*> = Ny/p(z) = 21 . So1=yi"! = z“5 . Thus

1= g4"~1/2, Since g has order ¢™ — 1, we have 2|t. O

Applying this proposition to the calculation of (9), we see that we only need

to evaluate

Nqui /F, (z3 + az; +b)
I, ’

where (E) is the quadratic character. But if we now specialize to ¢ = p, we need

to evaluate

N]dei /]Fp (Z’? + ax; + b)
p )

where (1—)) is the Legendre Symbol. So, using Algorithm 2 involves the evaluation
of Nr ,./F, (z2 + az; +b). (We drop the subscript F,4; /F, for the remainder of our

di _
discussion.) Recall that if a € F4; , then N(a) = o5 (mod p). Unfortunately,
as both p and d; increase, the calculation of N(a) can become very involved! How-
ever, we can make use of the fact that f; is the minimal polynomial of x;. The next

proposition shows that calculating N (z? + az; + b) is equivalent to evaluating

(=1)% fi(e1) fi(e2) fi(es),

where the e;’s are the three roots of 2% + az + b.
PROPOSITION 5.3. Let H/F be a finite field extension of degree n, « € H, and
f(z) = chary p(z) = [[e; (x — o) where a; € H. Then for every g(z) € Flz],

1) charyy/r(z) = [Tim; (z — g9(c:))
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2) Nu/r(9(e)) = [Tiz; 9(s) = ™ (=1)"" [T7L, f(B;)
where g(z) = ¢~ (x — B;) in Flz].

ProOOF. By definition we have

chary(a)/r(x) = char g ay(z)

where A is any n X n matrix representing the endomorphism A — aX €Endp(H).

Now, for any matrix A,

n

chary(ay(z) = [[(= — g(as))

i=1
by the Jordan Canonical Form ([HoKu] 7.3), so 1) follows.
For 2), by definition, for any 8 € H,

Niyr(B) = (—1)"chargr(0).

Thus, by 1),

Nu/r(g(a)) = (‘D"H(—g(ai))zng(ai)

I
:js
s
8
£
|
&
I
o)
S
—
::]:
D
|
>

i=1 j=1 Jj=1i=1
m n m
= IO TG — ) = (=0 T £85)
j=1li=1 j=1
This gives us the desired result. O

COROLLARY 5.4. Suppose that f(z) = 2° + az +b is a polynomial over K = F,
and that f factors in K[z] as

2 tar+b=(z—el)(z—e)(x —e3).

Suppose further that f; is an irreducible factor of ¥y, d; = deg(f;), and f(x;) = 0.
Let Fpa; =T, [z]/(fi). Then

(%3 +I;;,~ +b) _ ((—1)‘1" IEZI fi(ej)> ‘

To further shorten the running time of this algorithm, we can impose the con-

dition that we pick f; such that d; is minimal among all d; such that 2d; 1. When

we implemented Algorithm 2, we used this corollary to evaluate (9).
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However, in some cases it is not necessary to go all the trouble of computing
the quadratic character in (9). In fact, we can sometimes determine d from the way

¥n, factors in F, [z], or more precisely, from the way 1),, does not factor.

PROPOSITION 5.5. Let E be an elliptic curve of Fy, and n # char(K) is
prime. Suppose that the division polynomial v, of E is irreducible in F,[z]. Then
(M) = —1. Furthermore, if ord(qg,n) = n — 1, then d = n? — 1. Otherwise,

n

n?-1
d=01

PROOF. Since 1, is irreducible, | = deg(y,) = (#T_n So d = WT_I) or
d=n?>-1.1If (@) =1, then by Corollary 2.15, d|(n — 1). However, neither
("22_*1) nor (n? — 1) meet this condition. Similarly, if (@) =0, then d|n(n —1).
But again, neither of our two possible values meet this criterion. Thus, the first
statement follows.

To prove the second statement, we recall the d|ord(g,n)(n + 1) by Corol-

. . 21
lary 2.15. So, if ord(g,n) < (n — 1), then it must be the case that d = %
Finally, if ord(q,n) = n — 1 we show that d = n?> — 1. Suppose, to the contrary,

_ (n?-1) d_ @*=-n . .
that d = ~—5—. Then a® =a 2 =1 € 2, where « is a solution to

T? —agT +q=0 (mod n),

n2—
that is, a is one of the eigenvalues of p,(o,). But e = F,> implies that «

is a square in F,,2. But then, by Proposition 5.2,

= ()= (50) = ()00

But the last statement implies that (£) = 1, or in other words, ¢"7" =1 (mod 7).

But this contradicts the hypothesis that ord(q,n) = n — 1. So, d = n% — 1. d

From this proposition, we see that we can determine d in some cases from
the way v, factors in the ring Fy[z]. This produces a considerable savings in the
running time of Algorithm 2 since we avoid the process of calculating norms. It
is hoped, but not known, that there exist other such short cuts, i.e., methods of
determining d strictly from the way v, factors. Our implementation of Algorithm
2 incorporated this proposition by first checking if ¢, was irreducible in F,[z]; if it

was, then we would use this result to calculate d.
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Before we continue with the next section, we note that one of the most time
consuming pieces of this algorithm is the factorization of v, in the the polynomial
ring F,[z]. To increase the overall efficiency of the algorithm, an efficient algorithm

for factoring in F,[z] should be used.

3. A Comparison of the two Algorithms

In this section we compare the performance of the two algorithms. For our test

curve, we will use the INRIA curve
E :y* = 2® + 105z + 78153,

which was first named and studied by Atkin [At]. The curve is inspired by the
address of the INRIA institute: Domaine de Voluceau-Rocquencurt, B.P. 105, 78153
Le Chesney cedex. The curve was first used by Atkin in computing #E(F,), where
p was the first 200 digit prime. See [Sc2] and [At] for a discussion of this topic.
It should be noted that the above curve is not an elliptic curve when the
char(K) = p divides the discriminant of E. As usual, the discriminant is defined

to be A = —16(4a® + 27b%). Now, for the INRIA curve we have

A = —16(4(105)% 4 27(78153)%) = —(2)*(3)3(13)(167)(2813479).

Therefore, if p # 2,3,13,167, or 2813479, then the INRIA curve is an elliptic curve
over [F,.

As noted, both algorithms were implemented for the case K = [, in Maple V
Release 4 on a Packard Bell Pentium /66 using Windows 3.1 as its operating system.
In comparing the algorithms, we stayed within a small window of allowable input.
That is, we compared the algorithms for all primes p,n < 101. In comparing the
two algorithms, the first thing we immediately noticed was that Algorithm 1 is
vastly superior to Algorithm 2.

When using Algorithm 1, we found that for a fixed n, whether n = 5,53, or 101,
for all p < 101 the algorithm took less than 1 second of CPU time. Even if p < 200
the algorithm still needed less than 2 seconds of CPU time. However, as p increased,
there was a marked difference in running time. In fact, there appears to be a linear
increase in running time as p grows, as evident in Figure 1. This is due mainly

to the fact that the calculation of ag grows at roughly a linear rate. However,
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FI1GURE 1. Algorithm 1 for the INRIA curve: p versus CPU Time

(seconds), when n = 5.

when we fixed p and varied n, we found that in most case the time involved stay
constant, regardless of the value of n. For example, when we fixed p = 53 and let n
run through all the primes less than 100 (Figure 2), we found that in the majority
of cases, the time involved was between 0.25 and 0.3 seconds CPU time.
Algorithm 2 was a completely different story. For n > 20, Algorithm 2 rarely
completed under 60 seconds of CPU time, regardless of the value of p. We did find,
however, that when we fixed n and varied p over all all primes < 200, the time
involved stayed relatively constant. For example, for n = 17, Algorithm 2 took
roughly 40 seconds to finish for most of the primes under 100 (Figure 3). Swapping
the place of n and p, that is, fixing p and varying n, we found that as n increased,
the time needed for the algorithm to quit grew exponentially. Indeed, when we
tried the case that p = 5 and varied n, we found for all n < 23 the time involved
was less then 30 seconds. For n > 23, the time involved jumped up past 5 minutes

of CPU time (Figure 4).
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FIGURE 2. Algorithm 1 for the INRIA curve: n versus CPU Time

(seconds), when p = 5.

In the appendix, we compute d for all elliptic curves (up to F,-isomorphism)
over the finite field F,. We do this for all n,p < 37. We also included the total
running time for the algorithms to calculate d over all curves. As well, the average
time for computing d for each curve is included. We see from these table that the
observed times for INRIA curve are similar to the average times.

It should be duly noted that each algorithm incorporated some of the inbuilt
Maple procedures. This prevents us from declaring Algorithm 1 the better method
since it is not clear whether the Maple code can be further optimized. This may the
case for Algorithm 2. Algorithm 2 relies, in part, on Maple’s subroutine for factoring
polynomials over finite fields. Better algorithms may exist though this question was
not fully looked into. Of course, one way to increase the efficiency of both algorithms
is to divorce them from symbolic programs like Maple or Mathematica and rewrite

them completely as specialized programs.
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F1GURE 3. Algorithm 2 for the INRIA curve: p versus CPU Time

(seconds), when n = 17.

In general, it would appear that Algorithm 1 is the superior of the two methods.
In fact, for most curves under the conditions we consider, i.e, n, p < 100 the runtime
was usually less 2 seconds of CPU time. Algorithm 2 appears to be limited to very

small n, due in part to its dependence upon the factoring of a polynomial over a

finite field.

4. Finding all Elliptic Curves over F,

The material in this section will lead into the final chapter in we which count
the number of K-isomorphism classes of curves E over K = [, whose field of

n-torsion points have a given degree, that is,
Zy(n,d) =#{E/K =F; : [Kgn: K] =d}/ ~k .

But to do so, we need a way in which to list all given curves up to IF;-isomorphism.

This is the focus of of this section.
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FIGURE 4. Algorithm 2 for the INRIA curve: n versus CPU Time

(seconds), when p = 5.

Let E be an elliptic curve over K = I, given in Weierstrass form,
E:y*>=2%+azx+b.

We can associate with every curve E an invariant, called the j-invariant, where

4a3
ip=1728— &
I =112 s o

If j € K and j # 0,1728, we can construct a curve E with this j-invariant, namely,

L2 A
j—1728" " j— 1728

(10) E;j:y*=2°

In fact, under the hypothesis that j # 0,1728, then there are only two curves up
to K-isomorphism over K with this j-invariant: the above curve and its quadratic

twist,
275 54j
23— — J ' J 9,
7 —1728 7 —1728
where g is not a square in K. For a more thorough analysis of twisting, see [Si]

X.5.

Ejtwist 1 y° = g’z +
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The cases where j = 0 and j = 1728 are more involved. We see from the

formula for jg that j = 0 if and only if @ = 0, that is,
E:y?=2°+0.

Over K, there may be 6 or 2 non-isomorphic curves with j = 0. More precisely,
there are always k = [F /(Fy)®| curves, and we have k = 6 if ¢ = 1 (mod 3) and

k=2if¢qZ1 (mod 3). If ¢ = 1 (mod 3) these curves are
E:y’=23+g

where g € FX /(F)®, that is, g runs through the representatives of Fy /(Fy ). If
g # 1 (mod 3), then there are only two curves, E : y?> = 23 + 1 and its quadratic
twist E' : y? = 23 + g, where g is not a square in F,.
The case for j = 1728 is similar. We see that this situation occurs when b = 0,

ie,

E:y?* =2+ azx.
There may be 2 or 4 curves with this j-invariant; the number is dependent upon
the value k = [F /(Fy)*|. If ¢ = 1 (mod 4), then k = 4. So the four curves with
j = 1728 are

E :y? =23 + gaz,

where g € Fy /(FX)*. If ¢ # 1 (mod 4), then there are two curves, E : y*> = 2% 4z,
and its quadratic twist E'.

Therefore, to construct all curves E over K, we can run through all j € F,
and construct the corresponding curve using (10), or in the case that j = 0 and
j=1728, E : y> = 23 + 1 and E : y?> = 2 + z respectively. Then, depending
upon the g, we form the twists of the curves. Observe that there will be at least 2¢
elliptic curves over F, because for each j € Fy, there are at least two curves with
this j-invariant. At most, however, there will be 2¢ + 6 curves. This will occur
when ¢ =1 (mod 12). Under this hypothesis, there will be six curves of j = 0 and
four curves with j = 1728. Adding this total to 2(¢ — 2), the number of elliptic
curves with j # 0,1728, we get the desired result. In fact, we can write an explicit
formula for the number of curves over I, up to F;-isomorphism:

#{elliptic curves over F,}/ ~ = 2(¢ — 2) + (4 +2 (%)) + (3 + (_71)) ’
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where (E) is the Legendre symbol.

The method to construct the tables found in the appendix used this approach;
for each j € I, we found the coeflicients a and b of the curve E;, storing the results
in an array. Once all the coefficients had been found, we would pass each pair a
and b to our algorithm to compute d.

However, as the next two propositions show, sometimes all that is necessary is
to compute d = [Kg,, : K] for one curve in the twist class. From this result, we

may be able to deduce the degree d' = [Kg , : K] for the twist as well.

PROPOSITION 5.6. Let E be an elliptic curve over K =T,. Further, let E' be

the quadratic twist of E over K, and suppose that n # char(K). Then ag = —ag:.

PROOF. Let E be defined by y> = 2% + ax + b and E', so E' is given by
y?> = z® + g%azx + bg® where g is not a square in F,. But then by formula (8) of

Chapter 5, we have

z% + g%ax + bg®
o = —Z(#>

z€F, q
- ((gw)3+g2a(gw)+b93>
gz€Fy Fq

2 +ar+b
I

I

|
VS
H|=
N———

O

PROPOSITION 5.7. Let E be an elliptic curve over K = F,. Let E' be the

quadratic twist of E over K, and suppose that n # char(K) is prime. Let d =
[Kgn: K] and d =[Kg/n : K]. Then

1) If24d, then d' = 2d.

2) If4|d, then d' =d.

3) If2|d but 41d, then

if ord(¢,n) =1 (mod 2)
if ord(¢,n) =0 (mod 2)

d =

QI
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ProoFr. By Proposition 5.6, we have ag = —ag'. Let og be the Frobenius
automorphism that generates Gal(Kg,,/K) and og the automorphism that gen-
erates Gal(K g ,,/K). Furthermore, let p,, be the injective homomorphism from
Gal(Kg,n/K) to GLy(Z /nZ) as given in Corollary 1.6. Similarly, let p!, be the
injective homomorphism from Gal(Kg: ,/K) to GL2(Z/nZ). To prove this propo-
sition, we need the following:

Claim:
ord(p,(0k)) = ord(=p,,(0r)).
We first observe that 5,,(0g) is a solution to
T? —agT +q=0 (mod n)
and p, (0g) satisfies
T? +agT +p=0 (mod n).

Factoring the above polynomials over F,[z] gives
(T—-—a)(T-6)=0 and T+a)(T+B)=0
respectively. If p,,(cg) and 7, (og) are diagonable, we will have

a 0 —a 0
PnloE) ~ and 7, (0p) ~
0 B 0 -8
From this we deduce that p,,(cg) ~ —pl, (0 &), thereby implying that ord(p, (cg)) =
ord (=p.,(0g)) in GLy(Z /n7).

In the case that p,,(cg) and p,,(cg) are not diagonable, we have

_ a 1 = -a 1
Pn(oE) ~ and 7y, (0pr) ~
0 «a 0 -«

In this case, p,,(cg) # —p,(or) but p,(cr)™ ~ —p,,(cr)". But from this we can
deduce that ord(p,(cg)) = ord(—p!,(0g)). This completes the proof of the claim.
To prove 1), we suppose that 2t d. Then by the claim, we have that

ord(—p}, (k) = ord(—1L) ord(py, (0r)) = d.
From this and the fact that 24 d, we can deduce that

(~5)'Pulop)" = (~1) Plon)” = .
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So, P! (og)? = —I> So, d' = 2d, and thus, 1) follows.

Now suppose that 4|d. By the claim, we have the fact that
(=L)'pn(op) = P, (08)" = Pa(0E)? = L.

So, d'|d. We wish to show that d' = d. Suppose that d' < d. If d’ where even, then
we would have an immediate contradiction since this implies that 7, (og)? = I
which is false. So suppose that d’ is odd. But then this implies 5, (05)% = —I
from which we deduce that ﬁn(aE)M = I,. But this is a contradiction since the
order of p,,(cg) has order divisible by 4, but 2d' does not have this property. Thus,
2) follows.

Finally, suppose that 2|d but 4 { d. We will first show that ' = d or ' = &
where d' = [Kgr , : K]. We have

ord(=py,(05)) = ord(p,,(o))-

Therefore,

=7 (08)" =D,(08)" = L.

~Ip,(0p)
So, pi,(0g )% = I which implies that d’ = ord(p, (cx))|d.- Now suppose that d' is
even. Since

ord(p,(0r)) = ord(—p,(or)),

this implies that

(o)’ = —1§ D, (00)" =pu(0n)" = L.
Thus, d|d’, from which we deduce that d' = d.
Suppose that d' is odd. Then
ﬁ,n(a'E')d = - gﬁn(UE)d = _I2pn(o'E)d =Ip.

From this we deduce that p,(0r)* = —I, which implies that 2d' = d. So, d' = d
We will now show that if we know the parity of ord(g, n), then we can distinguish
between the two possibilities. We make use of the fact that ord(g,n) divides both
d and d' by Corollary 1.10. Suppose that ord(g,n) =0 (mod 2). We wish to show
that d' = d. Suppose not, i.e., d = . Since [Kp:,, : K] = £, this implies that
ord(g,n)|4. But since 4 = 1 (mod 2) and ord(g,n) = 0 (mod 2), ord(¢g,n) { 4, a

contradiction. So d' =d.
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Now assume that ord(g,n) = 1 (mod 2). We first observe that ord(q,n)|g.
Furthermore, both matrices p,,(cg) and 7, (ocg) have determinant = ¢ (mod n).
So, in particular,

det(p,(0p)?) =1 (mod n).

Since p,,(cr)? = Iz, we can deduce that

Pn(UE)Z NIQa_I27 , Or
-1 0 1
-1 0
But pn(aE , because these two matrices do not have

determinant = 1 (mod n). Moreover, pn(aE) #4 I since this implies that d #

ord(p,,(cg)). Hence, ﬁn(aE)% ~ —I. But from this, we have

d
2

P (op)t = ~1;7,(0p)

wle,

=1.
Thus, d' = ¢. O

As we can see from the above proposition, the calculation of d for one elliptic
curve E can always give us the value of d’ for the twist with little or no extra
work. Using this result, we can reduce the amount of computation in the problem

of computing d for all curves over I, .



CHAPTER 6

Exploring Possible Applications of the Algorithms

In this final chapter we move away from questions of efficiency and theory
to a discussion on possible uses for these algorithms. One natural use of these
algorithms is to count the number of elliptic curves over K = F,, char(K) = p,
whose field of n-torsion points is degree d € Z*. We also discuss the connection
between this counting procedure and the modular curve X (n) over a finite field F,.
Finally, we conclude this chapter with an open question about the possibility of

using Algorithm 2 to compute #E(F,).

1. A Remark on Counting Curves

Let K = F, and n # char(K) be a prime. If for each elliptic curve E over
K we compute [Kg, : K] using either of our two methods, then we can count
the number of elliptic curves over K (up to K-isomorphism classes) whose field of
n-torsion points is a field extension of degree d € Z+. We express this number by

Z4(n,d) where
Zy(n,d) = #{E[F, | d = [Kpn: K]}/ =

The tables in the appendix, therefore, allow one to compute Z,(n,d) for primes
p,n < 37. Note that the tables only consist of curves over F,, not F, = Fp-.
Moreover, from earlier facts about the relationships between ¢,n, and d, we can

deduce that
Zy(n,d) =0 ifd{n®>—1anddfn(n—1)

by Corollary 2.15. Also, if Z,(n,d) > 0, it will be the case that ¢ =1 (mod n).
In the next section we will show that the value of Z,(n,1) can be connected to the
modular curve X (n) defined over F,. We also remark that there is also a connection
between the numbers Z;(n,d) the number of F;-rational points on the reductions
of the modular diagonal quotient surfaces as considered in [KaSc].

61
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2. Z4(n,1) and Counting #X (n)(F,)

In this section we will sketch out how we can use Z;(n, 1) to count the number
of F,-rational points on the modular curve X (n)/F,, i.e., #X (n)(F,). A possible
application of this discussion is the ability to determine the coefficients of the zeta
function for X (n). As well, the material of this section allows us to partially verify
the tables of the appendix for the special cases of n = 3 and n = 5, and ¢ = p when
p=1 (mod n). We will also consider the first interesting case for n, that is, when
n = 7. In this case, we will compare our results to the tables of Cremona [Cr].

For this section we will be appealing to the theory concerning the modular
curve X (n) [Ig] [De]. For this entire discussion we will be assuming the following
conditions hold. First, n # char(K) = pis a prime. And secondly, K = F, contains
all the nt” roots of unity ¢, € K, or equivalently, ¢ = 1 (mod n). We fix a primitive

nt

k root of unity ¢, from now on.

The curve X (n) is a smooth, geometrically irreducible, projective curve over
the field K. We now let Y (n) = X (n)\cusps, where the cusps are K-rational points.
Then, for any K' D K, the K'-rational points of Y (n) can be interpreted in terms
of 3-tuples (E,P,Q)/k. Here E is an elliptic curve over K', and P,Q € E(K)
are K'-rational points which form a basis for E[n] satisfying the condition that
en(P, Q) = (,, where e, is the pairing described in Section 1.4. For any extension

K' D K, there exists [Ig] a natural bijection between the points z € Y (n)(K') and

the isomorphism classes of 3-tuples, i.e.,
Y (n)(K') «— Iso. Classes(E, P, Q) /k:-

In other words, we can identify each y € Y(n)(K') with a 3-tuple (E, P,Q)/k/,
where (E,P,Q) k' is a representative of its isomorphism class. We note that
(E,P,Q)/k ~ (E',P',Q") /K if there exists a K-isomorphism ¢ : E/K' 5 E'/K'
such that ¢(P) = P' and ¢(Q) = Q'. For example, if jg # 0,1728 then the
isomorphism class of (E, P, Q) k' consists of itself and (E, —P,—Q) /-

We now observe that the group G,, = Sl2(Z/nZ)/ £ 1 naturally acts on X (n)

and on Y (n) via the the above bijection as follows:

M- (E,P,Q) = (E,aP + cQ,bP + dQ)
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if M = (a 2) € G- In addition there is G,-equivariant morphism f from this
c
projective curve X (n) to X (1) =2 Pi defined by
f:X(n) — X(1)
(E,P,Q) +~ Jg
cusps 00,

such that G,\ X (n) = X (1). In other words, the point z = (E, P, Q) is taken to the
j-invariant of the elliptic curve E. Further, the cusps of X (n), which are K-rational,
are taken to oo, the point at infinity of Pk.

Recall from Definition 2.4 that we can assign a degree to a morphism. Since
G, acts faithfully we have

deg(f) = |SLo(Z /nZ)] + 1| = w

Moreover, if K(X(n)) and K(X(1)) are the functions field of X(n) and X(1)
respectively, then it can be shown that K(X(n))®" = K(X(1)). In particular,
K(X(n))/K(X(1)) is Galois. Since K(X(n))/K (X (1)) is Galois [Ig], the ramifica-
tion index e, (f) of f: X(n) — X(1) and x € X (n) depends only on f(z) =y, so
we can write e, = e,(f). From Igusa’s paper [Ig] we have

n ify=o0

ey =4 3 ify=0

2 ify=1728

where e, = 1 otherwise.

Using the following formula due to Hurwitz, we can compute the genus of X (n):

1
) 2g(X(n) -2 = deg(/) <2g<x<1))—2+ ) (1_8_)>_

yex (1) Y
Here, g(X(n)) and g(X (1)) refer to the genus of X(n) and X (1) respectively. (See
[Ha] IV.2.4 and exercise IV.2.4 for a proof of this formula.) Since X (1), = P,
we know that g(X (1)) = 0. Simplifying the above formula gives us

29(X (n) - 2 -

deg(p) (-2 + (- +a-p+a-1)

(n* —1)(n —6)
12 '
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We now relate the number of K-rational points of X (n),x to Z;(n,1). We
note that for every tuple (E, P,Q),k that since P,Q € E(K), then E[n] < E(K),
thereby implying [Kg, : K] = 1. In particular, if (E,P,Q) € X(n)(K), then

[KEn : K] = 1. Conversely, if E is an elliptic curve with [Kg, : K] = 1, then
deg(f)

ejE

E gives rise to to precisely rational points on X (n). Thus, this gives us the

following formula:

(12) #X (n)(F,) = defoif ) 4 defsf ) 1 crrss d:g(z ) | cdeg(f)
where
o = #{E/F, | [Kpn:K]=1and jg =0},
cims = #{E/F, | [Kgn:K]=1and jg=1728},

¢c = #{E/F, | [Kgn:K]=1and jg #0,1728}.
Observe how this should compare with Z,(n, 1), namely,
(13) Z4(n,1) = co + c1728 + c.

We may summarize our discussion as follows:

PROPOSITION 6.1. Let

1 1
(14) Z;(n)=6 (500 +goms C) .
Then
n?-1 nn*-1)_,
(15) #X)(E,) = "t M )
2 12
Proor. This is immediate by substituting (14) into (12). O

Notice that from this discussion, our algorithms could be used to compute some

of the coefficients of the zeta function of X (n)/F,. Recall that

Zx(n) 7, (T) = exp (Z sz> :

i=1 L
Since Zxn)/r,(T) is a rational function, we need to compute only finitely many
#X(n)(Fyi) to determine all the coefficients. Unfortunately, there is a question of
whether this is a practical method of determining these coefficients. Recall that

our algorithms were only implemented for the case that K = IF,. While the theory
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remains the same for K = F,, implementation becomes more difficult since we need
to use the arithmetic of IF, .

We now specialize to the case that n = 3 and n = 5 and X (n),x where K = F,.
Recall that ¢ = 1 (mod n). We will show how the above discussion allows us to
check our tables in a limited sense. Using Hurwitz’s formula (11), we find that

9(X(3)) = g(X(5)) =0. So, X(n) = PL for n = 3,5. We then deduce that

#X(n)(Fy) =g +1

for both n = 3, 5.

For n = 3, we used our algorithms and (15) to compute #X (n)(F,) for all
primes p < 100 and p = 1 (mod 3). Comparing this to the expected result of
p+ 1, we see that in all cases they agree. The following table (Table 1) contains
our results for this comparison. The first column contains all primes p < 100 such
that p =1 (mod 3). Columns two through four contain the values of ¢y, ¢1728, and
c that were obtained via our algorithms. The fifth column is the value of Z,(n,d).
The sixth column contains the value of Z>(n) as defined in (14). In the last column,

we use our observed data to evaluate (15), that is,
#XE)Fp) =4+2-2,(3)

since n = 3. Notice that each entry in the last column of the table is equal to p+1,
which is what we expected.
Moreover, the case of n = 5 is very similar. The only differences are that we

must use p =1 (mod 5) and the formula for (15) becomes
#X(5)(F,) =12+ 10- Z,;(5).

The observed results again agree with the expected results for all p < 100. We
include a table (Table 2) for this situation.

Therefore, from these two tables we see that the output from our algorithms
gives the correct value under these special conditions. This provides a basis of
confidence that our algorithms were implemented correctly.

For the cases n > 5, we encounter a difficulty on the theoretical side. For

n > 5, X(n) is a curve with genus > 0. In fact, by (11) we can deduce that g(X(n))
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prime p | ¢o | ci728 | ¢ | Zp(3,1) | Z;(3) |4+2-Z;(3)
7 1 0 |0 1 2 8
13 1 1 0 2 5 14
19 1 0 1 2 8 20
31 1 0 2 3 14 32
37 1 1 |2 4 17 38
43 1 0 |3 4 20 44
61 1 1 4 6 29 62
67 1 0 |5 6 32 68
73 1 1 |5 7 35 74
79 1 0 |6 7 38 80
97 1 1 |7 9 47 98

TABLE 1. Comparing the Output of the Algorithms to #X (3)(IF,)

prime p | ¢o | ci728 | ¢ | Zp(5,1) | Z;(5) | 12+ 10- Z;(5)
11 0 0 0 0 0 12
31 1 0 0 1 2 32
41 0 1 0 1 3 42
61 1 1 0 2 b} 62
71 0 0 1 1 6 72

TABLE 2. Comparing the Output of the Algorithms to #X (5)(F,)

grows like n3. This makes it very difficult to determine a nice expected result for
#X (n)(F,).

To get a flavor of this problem, we consider the first non-trivial case, n = 7.
By (11), we calculate the genus to be g(X (7)) = 3. Now consider the Jacobian of
X(7), that is, J = Jac(X(7)). Then it can be shown ([Ka] based upon the results

of [KaRo)) that J is isogenous to the cube of an elliptic curve E over K, i.e.,
(16) Jac(X (7)) ~ E3.

Moreover, it can be shown that E = X¢(49)r,, an elliptic curve with conductor

N = 49. From the tables of Cremona [Cr], we can write an explicit equation for
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E, namely,

E:y+ay=2—2>-20-1.

If we now write out the zeta function for E and X (7), we will have

L), (T)
_ Lg/k(T)
7o) = GoT)i - T

where Lx(7),,(T) and Lg/k(T) are the L-series of X (7) and E respectively. By

the isogeny relation of (16), we can deduce that
Lx(1),(T) = Lgx(T)°.
But
Lg/k(T) = (1 - apT + qT?),

hence, the zeta function of X (7),x becomes

(1 — aET + qT2)3

Zx(n,x(T) = (1-T)A—qT)

Suppose that (1 —agT + ¢T?) = (1 — aT)(1 — BT) € K[T]. Then we can rewrite

the above zeta function as

— 1+¢' —3(a’ + BY),;
Zx(r) e (T) = exp (Z q Z,( ’8)T>.
i=1
From this we deduce that
an #X(N(K)=1+q—3(a+B)=1+q— 3aE.

If we specialize to K = [, then we can use this result in two ways. First, we can
use this result in combination with (15) to check the output of our algorithms with
known values of ag, which, by Eichler-Shimura, is the p*"-coefficient of the unique
cusp form of S2(I'0(49)). And second, since we can compute #X(7)(F,) for all
p =1 (mod 7) with our algorithms, this gives us a new way in which to calculate
ag (for p=1 (mod 7)).

In Table 3, we use our results for all primes p < 100 and p = 1 (mod 7) to
calculate ag using (17). We then compare this result to the value of ag given in
[Cr]. We also use our algorithms to compute ag for the first two primes p > 100

and p =1 (mod 7). These results go beyond the tables of [Cr]. The first column
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prime p | co | cims | ¢ | Zp(7,1) | Z3(7) | #X(D)(F,) | HR=EXOE) | o
29 0 0 0 0 0 24 2 2
43 1 0 0 1 2 80 -12 -12
71 0 0 0 0 0 24 16 16
113 0 1 0 1 3 108 2 -
127 1 0 0 1 2 80 16 -

TABLE 3. Comparing the Output of the Algorithms to #X (7)(F,)

list the primes p such that p =1 (mod 7). Columns two through four contain the
values for co, ¢1728, and ¢ respectively. Column five has the value of Z,(7,1), while
column six is Z,(7). In the seventh column, we evaluate # X (7)(FF,) using (15). In
the next column, we compute ag by using (17). Finally, the last column gives the
value for ap as listed in the tables of [Cr]. Observe that this value agrees with the
previous column. There is no entry in this column for the last two rows since the

tables of [Cr] only contain ag for p < 100.

3. Computing #E(F,) and Algorithm 2: an Open Question

As with all questions in mathematics, answers inevitable lead to more questions.

We conclude with a question that is suggested by this paper.

QUESTION 1. Can Algorithm 2 be used in the calculation of ag, or equivalently,
of #E (]Fp)?

This question is closely related to the work of Schoof and Atkins [Sc2],[Sc1][At].
While Algorithm 1 utilizes ag to calculate d, Algorithm 2 does not depend upon
ag. Algorithm 1, therefore, shows that d and ag are related; this question asks
whether we can work backwards from d to get ag.

Suppose that an elliptic curve E over I, has been given. Now using Algorithm
2 we can compute d = [Kg,,, : K| given some prime n # p. Suppose that « and 3
are the roots in IF,, of the characteristic polynomial of the Frobenius endomorphism.

By Corollary 2.12, we have

T? —agT +p= (T —a)(T - B).
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Now since d is the degree, a? = 82 = 1 (mod n), then,
(18) al+p1=2 (mod n).

Let ag,m = o™ + ™, for m < 1. Then it is a possible to write a recursive

definition for ag m, in terms of ag1 = a + f (mod n), namely,

agg = a+p (modn)
m
agm = aQE’% —2p2 (modn) m even
m—1
agm = ApmyGgmo1 —p 2 A3 (mod n) m >1 odd

Notice that the above formulae rely on the fact that a8 = p (mod n). Now consider

the following polynomials f,, € Z[z] which are defined similarly, that is,

h = =
fm = f% —2p% meven
fm = fmTJrl'fmT—l—me_la: m > 1 odd.

But then if substitute ag,; into fg4, we have

ag.d = fd(aE,l) (mod TL)

We can then rewrite (18) as
(19) fd(aE,l) =2 (mod TL)

But then notice that ag = ag1 (mod n) will also satisfy this polynomial. So, if
we take all solutions to the equation fz(z) =2 (mod n), the desired value (up to a
congruence modulo n) will be in the solution set.

So now suppose that we find d; for a number of n;. Then we know that ag

(mod n;) will satisfy
fa, () =2 (mod ny).
That is, ag (mod n;) will be in the solution set to the above polynomial. It is the

hope that if we consider enough d; and n;, we can pick out ag. To make this more

clear, we work through the following example.
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n | d |roots of f3(x) —2 (mod n)
3|8 -1,0,1

5| d 2

7|48 0,+£1,+2,+3

11| 10 3-1,0,1,3

13| 84| 0,41,+2 +3,+4, 45, +6
17 | 68 -8,0,8

TABLE 4. Computing Possible Values for ag

Example 6.2: Let E : y*> = 2% + 522 + 95 be an elliptic curve over F, when

p = 101. Now, using a well know result due to Hasse (see [Si]V.1.1) we have

lag| < 2y/p

Since p = 101, we know that ag is an integer in the interval —20 < ap < 20. We
now use Algorithm 2 to compute d for the primes n < 17. Then for each d and
n, we compute the solutions to f4(x) =2 (mod n). The results are summarized in
Table 4.

Notice that when n = 3,7,13, we do not get any information about ag. How-
ever, when n = 5, we find that ag = 2 (mod 5). When n = 7, we find that either
ag =0,—1,1,-3 or 3 (mod 11). Finally, we see that ag = —8,0 or 8 (mod 17).
Checking all integers in our range, we will find that there is only only one possible
value for ag, namely, ag = —8, which is, in fact, the correct result. (The reader is
invited to verify this: write out all integers in the interval [-20,20] and use the above
results to eliminate each integer that fails to meet one of the above conditions. For

example, —20 cannot be ag because —20 # 2 (mod 5).)

While the above example shows that we can use Algorithm 2 to calculate ag,
there are many more questions that need to be answered. First of all, will this
method always provide a unique result? In the case that for each n we find that the
degree d is such that 4|d, then both the curve and its twist have the same degree.
So, +ag will always be a solution to the equation fi(z) =2 (mod n). In this case,

it would seem that we could only find ag up to a sign. Second, how many n do
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we need to check before we can distinguish ag? We can quit in our example after
checking n = 17. However, in some cases, we may need to check very large n before
we can determine ag. And finally, is this any improvement over other algorithms
for computing ag? This question is linked to the previous. If we can keep n small,
then by our discussion in Chapter 5, we know that Algorithm 2 is fairly quick. But

as m grows, the running time in Algorithm 2 also increases.



APPENDIX A

Tables

Each table corresponds to a prime 5 < p < 37, where p is the characteristic of
K =TF,. For each p, we constructed all elliptic curves over the field K as described
in Section 5.4. In the tables, the first four columns correspond to information about

elliptic curves:

e j is the j-invariant of the curve.

e g and b are the coefficients of the Weierstrass equation for E, that is,
E:y?>=23+az +b.

e a, = (p+1) — #E(F,). From this column, we can also deduce #E(F,).

The remaining columns give the value of d,,, where
dn = [KE,n N K],

and n is a prime < 37. Reading across the table, we get an elliptic curve and the
value of d,, for this curve for various n.
For example, the third row of Table 1 (the table consisting of all curves over

Fs) tells us that
Y =2+2+3

is an elliptic curve over F5 with j-invariant 1. Reading across the row, we see that
the degree of the field of 11-torsion points is 60.

The last five rows of each table contain the following information:

e ord(p,n) is the order of p in Z /nZ.

e Alg1: Total lists the total running time for Algorithm 1 to generate d, for
every elliptic curve E over IF, up to IF,-isomorphism.

e Algl: Avg. contains the average running time for Algorithm 1 for each curve.
It was determined by taking the total time and dividing by the number of curves
over F,.

72
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e Alg2: Total lists the total running time for Algorithm 2 to generate d,, for
every elliptic curve E over F,. Note that we found the time only for n < 17 when
p <11, and for n < 11 otherwise.

o Alg2: Avg. contains the average running time for Algorithm 2 for each curve.
It was determined by taking the total time and dividing by the number of curves
over .

The tables were generated using Algorithm 1 implemented in Maple V Release
4. The computations were done on a Packard Bell Pentium/66 with the Windows

3.1 operating system.
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Jj a b a d3 ds d7  din di3 dir  dig doz dag  d3n  d3;
0 01 0 2 - 6 20 8 32 36 22 14 12 72
0 0 2 0 2 - 6 20 8 32 36 22 14 12 72
1 1 3 2 8 - 48 60 12 16 90 528 14 96 36
1 4 4 -2 8 - 48 60 12 16 45 528 14 96 36
2 4 2 3 2 - 48 110 56 288 180 22 140 30 36
211 -3 2 - 48 55 56 288 180 22 140 15 36
1728 1 0 2 8 - 48 60 12 16 90 528 14 96 36
1728 2 0 4 8 - 48 30 12 16 180 528 28 96 36
1728 3 0 -4 8 - 48 15 12 16 180 528 28 96 36
1728 4 0 -2 8 - 48 60 12 16 45 528 14 96 36
4 2 1 -1 8 - 6 10 56 16 171 22 420 48 1368
4 3 3 1 8 - 6 5 56 16 342 22 420 48 1368
ord(p, n) 2 - 6 5 4 6 9 22 14 3 36
Algl: Total (sec) | .549 - 549 824 494 Jr14 714769 659 1.044  .605
Algl: Avg. (sec) | 042 - .042 633 .038 .055 .055 .059 .051 .080 .047
Alg2: Total (sec) | 10.49 - 15.27 106.1 113.9 211.297 * * * * *
Alg2: Avg. (sec) | .807 - 1.175 8.159 8.758 16.253 * * * * *

Table 1: Elliptic curves over I, where p =5
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J a b a d3 ds d7 dn di3 dir  dig da3 dag d31  da7
0 0 1 -4 3 24 - 120 12 288 18 528 105 15 36
00 2 -1 1 24 - 120 12 288 18 528 35 15 36
0 0 3 -5 6 8 - 40 12 288 9 176 210 30 36
0 0 4 5 3 8 - 40 12 288 18 176 105 15 36
0 0 5 1 2 24 - 120 12 288 9 528 70 30 36
0 0 6 4 6 24 - 120 12 288 9 528 210 30 36
1 4 6 -3 4 4 - 10 168 16 114 22 210 480 342
1 1 1 3 4 4 - 10 168 16 57 22 105 480 171
2 3 1 -4 3 24 - 120 12 288 18 528 105 15 36
2 6 6 4 6 24 - 120 12 288 9 528 210 30 36
3 6 2 -1 3 24 - 120 12 288 18 528 35 15 36
3 5 5 1 6 24 - 120 12 288 9 528 70 30 36
4 5 4 -2 6 4 - 10 168 96 30 528 28 15 171
4 3 3 2 3 4 - 10 168 96 15 528 28 30 342
5 2 3 2 3 4 - 10 168 96 15 528 28 30 342
5 4 4 -2 6 4 - 10 168 96 30 528 28 15 171
1728 1 0 0 4 8 - 10 24 32 12 22 28 60 36
1728 3 0 0 4 8 - 10 24 32 12 22 28 60 36
ord(p,n) 1 4 - 10 12 16 3 22 7 15 9
Algl: Total (sec) 989 .824 - .879 .879 1.373 .934 1.318 1.098 1.263 .989
Algl: Avg. (sec) .052 .043 - .046 .046 .072 .049 069 .058 .066 .052
Alg2: Total (sec) | 20.82 24.41 - 40.01 127.3 449.5 * * * * *
Alg2: Avg. (sec) | 1.096 1.286 - 2.110 6.700 23.65 * * * * *

Table 2: Elliptic curves over I, where p =7
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J a b a d3 ds d7 du di3 diz  dio da3 dag d31 d3r

0 O 1 0 2 4 12 - 24 32 12 22 56 30 6

0O 0 2 0 2 4 12 - 24 32 12 22 56 30 6
17281 0 O 2 4 12 - 24 32 12 22 56 30 6
1728 2 0 O 2 4 12 - 24 32 12 22 56 30 6
2 1 9 4 8 3 21 - 168 96 60 22 28 960 36

2 4 6 -4 8 6 42 - 168 96 60 22 28 960 36

3 9 4 -6 2 3 24 - 168 16 18 176 840 960 228

3 3 10 6 2 6 24 - 168 16 9 176 840 960 228

4 8 6 3 2 10 42 - 12 16 15 528 28 960 228

4 10 4 -3 2 5 21 - 12 16 30 528 28 960 228

5 2 7 5 8 4 3 - 168 16 114 22 280 960 228

5 8 1 -5 8 4 6 - 168 16 57 22 280 960 228

6 5 1 1 8 6 24 - 12 16 60 22 280 30 228

6 9 & -1 8 3 24 - 12 16 60 22 280 30 228

YT 7T 8 -2 8 10 3 - 12 288 18 22 168 960 18

7T 6 9 2 8 5 6 - 12 288 9 22 168 960 18

8 10 2 4 8 3 21 - 168 96 60 22 28 960 36

8 7 5 A4 8 6 42 - 168 96 60 22 28 960 36

9 4 3 -2 8 10 3 - 12 288 18 22 168 960 18

9 5 2 2 8 5 6 - 12 288 9 22 168 960 18
10 3 5 3 2 10 42 - 12 16 15 528 28 960 228
10 1 7 -3 2 5 21 - 12 16 30 528 28 960 228
ord(p,n) 2 1 3 - 12 16 3 22 28 30 6
Algl: Total (sec) | 1.483 2.032 1.593 - 2.032 1.538 2.252 1.483 1.867 2.306 1.867
Algl: Avg. (sec) | 064 .088 069 - 088 067 .098 065 .081 .100 .081
Alg2: Total (sec) | 32.68 33.18 56.35 - 191.633 8&b54.1 * * * * *
Alg2: Avg. (sec) | 1.421 1.442 2.450 - 8.332 37.13 * * * * *

Table 3: Elliptic curves over F,, where p =11
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J a b a d3 ds dr  du dis dir  dig da3 dag d31 d3r

o 0 1 2 3 24 6 40 - 72 18 264 140 30 36

0o 0 2 -5 2 8 6 120 - 72 18 264 420 30 36

0O 0 3 5 1 8 6 120 - 72 18 264 420 30 36

O 0 4 -7 3 24 2 120 - 72 18 88 420 30 36

0O 0 5 -2 6 24 6 40 - 72 18 264 140 30 36

0O 0 6 7 6 24 2 120 - 72 18 88 420 30 36

1 6 1 6 4 4 16 120 - 16 360 66 28 960 36

1 11 8 -6 4 4 16 120 - 16 360 33 28 960 36

2 8 10 1 6 4 16 10 - 136 18 11 28 960 1368

2 6 2 -1 3 4 16 10 - 136 18 22 28 960 1368

3 9 8 5 3 8 6 120 - 72 18 264 420 30 36

3 10 12 -5 6 8 6 120 - 72 18 264 420 30 36

4 7 12 -2 6 24 6 40 - 72 18 264 140 30 36

4 2 5 2 3 24 6 40 - 72 18 264 140 30 36

5 10 6 O 4 8 2 10 - 8 18 44 14 30 72

5 1 9 0 4 8 2 10 - 8 18 44 14 30 72

6 1 11 2 3 24 6 40 - 72 18 264 140 30 36

6 4 10 -2 6 24 6 40 - 72 18 264 140 30 36

7 4 5 4 6 4 16 120 - 16 360 132 14 960 36

7 3 1 -4 3 4 16 120 - 16 360 132 14 960 36

8 2 9 3 4 24 16 10 - 4 360 11 420 30 1368

8 8 7 3 4 24 16 10 - 4 360 22 420 30 1368

9 3 7 1 6 4 16 10 - 136 18 11 28 960 1368

9 12 4 -1 3 4 16 10 - 136 18 22 28 960 1368
10 5 3 4 3 4 16 120 - 16 360 132 14 960 36
10 7 11 4 6 4 16 120 - 16 360 132 14 960 36
11 11 4 2 3 24 6 40 - 72 18 264 140 30 36
11 5 6 -2 6 24 6 40 - 72 18 264 140 30 36
17281 0 -6 4 4 16 120 - 16 360 33 28 960 36
1728 2 0 4 2 4 16 120 - 16 360 132 14 960 36
1728 4 0 6 4 4 16 120 - 16 360 66 28 960 36
1728 7 0 -4 1 4 16 120 - 16 360 132 14 960 36
ord(p,n) 1 4 2 10 - 4 18 11 14 30 36
Algl: Total (sec) |2.472 2.197 2.417 2.637 - 2.637 2361 2.801 2.801 2.691 2.691
Algl: Avg. (sec) 077 068 .076 .0824 - .0824 074 .086 .087 0.084 .084
Alg2: Total (sec) | 43.94 45.53 52.84 90.74 - * * * * * *
Alg2: Avg. (sec) | 1.373 1.423 1.65 2.836 - * * * * * *

Table 4: Elliptic curves over F,, where p =13
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j a b a ds ds dr  du dis diz  dig da3 dag d31 d3r

0O 0 1 0 2 8 6 10 6 - 36 22 8 30 72

0O 0 3 0 2 8 6 10 6 - 36 22 8 30 72

1 1 15 -6 2 24 48 10 84 - 9 528 40 960 1368

1 9 14 6 2 24 48 10 84 - 18 528 40 960 1368

2 6 5 -3 2 4 6 120 84 - 9 528 28 960 1368

2 3 16 3 2 4 6 120 84 - 18 528 28 960 1368

3 8 1 -1 8 24 48 40 84 - 9 22 28 960 36

3 4 10 1 8 24 48 40 84 - 18 22 28 960 36

4 13 8 4 8 24 6 10 156 - 9 528 28 30 1368

4 15 12 -4 8 24 6 10 156 - 18 528 28 30 1368

5 14 6 4 8 24 6 10 156 - 9 528 28 30 1368

5 7 9 -4 8 24 6 10 156 - 18 528 28 30 1368

6 12 10 6 2 24 48 10 84 - 18 528 40 960 1368

6 6 15 -6 2 24 48 10 84 - 9 528 40 960 1368

7 9 16 -3 2 4 6 120 84 - 9 528 28 960 1368

T 13 7 3 2 4 6 120 84 - 18 528 28 960 1368

8 4 9 0 2 8 6 10 6 - 36 22 8 30 72

8 2 5 0 2 8 6 10 6 - 36 22 8 30 72

9 11 12 2 8 4 48 120 12 - 180 176 28 960 36

9 14 1 -2 8 4 48 120 12 - 180 176 28 960 36
10 15 4 -6 2 24 48 10 84 - 9 528 40 960 1368
10 16 6 ©6 2 24 48 10 84 - 18 528 40 960 1368
1728 1 0 2 8 4 48 120 12 - 180 176 28 960 36
1728 2 0 -2 8 4 48 120 12 - 180 176 28 960 36
1728 3 0 -8 8 4 48 120 6 - 90 176 28 960 36
1728 6 0 8 8 4 48 120 6 - 45 176 28 960 36
12 16 2 -7 8 4 6 10 84 - 171 22 40 960 1368
12 8 3 7 8 4 6 10 84 - 342 22 40 960 1368
13 3 11 -3 2 4 6 120 84 - 9 528 28 960 1368
13 10 8 3 2 4 6 120 84 - 18 528 28 960 1368
14 10 14 -2 8 4 48 120 12 - 180 176 28 960 36
14 5 4 2 8 4 48 120 12 - 180 176 28 960 36
15 5 7 -5 8 8 48 10 6 - 90 22 120 30 1368
15 11 2 5 8 8 48 10 6 - 45 22 120 30 1368
16 2 13 2 8 4 48 120 12 - 180 176 28 960 36
16 1 11 -2 8 4 48 120 12 - 180 176 28 960 36
ord(p, n) 5 4 6 10 6 - 9 2 4 30 36
Algl: Total (sec) | 3.680 3.680 3.735 3.680 3.845 - 3.735 3.955 3.900 4.009 4.009
Algl: Avg. (sec) 099 .099 .101 099 .103 - .109 .106 .105 .108 .108
Alg2: Total (sec) | 54.21 56.90 60.47 124.1 * - * * * * *
Alg2: Avg. (sec) | 1.465 1.538 1.634 3.356 * - * * * * *

Table 5: Elliptic curves over F,, where p =17
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J a b a d3 ds dr di1 di3 di7  dig da3 dag ds1 d3r

0O 0 1 8 3 12 6 120 12 144 - 176 840 30 36

o 0 2 7 2 12 6 40 12 144 - 528 840 15 36

0O 0 4 -1 3 4 6 120 12 144 - 528 280 30 36

0O 0 b5 -7 1 12 6 40 12 144 - 528 840 30 36

0O 0 & -8 6 12 6 120 12 144 - 176 840 15 36

0 0 10 1 6 4 6 120 12 144 - 528 280 15 36

1 15 8 2 1 12 48 10 168 16 - 528 840 240 1368

1 3 7 -2 2 12 48 10 168 16 - 528 840 240 1368

2 1 17 -8 6 12 6 120 12 144 - 176 840 15 36

2 4 3 8 3 12 6 120 12 144 - 176 840 30 36

3 13 12 7 6 12 6 40 12 144 - 528 840 15 36

3 14 1 -7 3 12 6 40 12 144 - 528 840 30 36

4 5 9 1 6 20 6 120 12 144 - 528 280 15 36

4 1 15 -1 3 20 6 120 12 144 - 528 280 30 36

5 6 7 4 6 20 48 40 168 8 - 22 840 30 1368

5 5 18 4 3 20 48 40 168 8 - 22 840 15 1368

6 4 11 -1 3 20 6 120 12 144 - 528 280 30 36

6 16 12 1 6 20 6 120 12 144 - 528 280 15 36

7 12 14 0 4 2 6 10 24 16 - 22 56 60 72

7 10 17 0 4 2 6 10 24 16 - 22 56 60 72

8 14 10 3 4 12 48 120 168 8 - 22 28 480 36

8 18 4 -3 4 12 48 120 168 8 - 22 28 480 36

9 8 3 4 3 20 48 40 168 8 - 22 840 15 1368

9 13 5 4 6 20 48 40 168 8 - 22 840 30 1368
10 10 18 5 3 2 48 10 12 272 - 22 28 480 1368
10 2 11 -5 6 2 48 10 12 272 - 22 28 480 1368
11 18 2 6 4 20 6 10 12 48 - 22 280 480 36
11 15 16 -6 4 20 6 10 12 48 - 22 280 480 36
12 16 6 -6 4 20 6 10 12 48 - 22 280 480 36
12 7 10 6 4 20 6 10 12 48 - 22 280 480 36
13 17 4 2 3 12 48 10 168 16 - 528 840 240 1368
13 11 13 -2 6 12 48 10 168 16 - 528 840 240 1368
14 9 1 2 3 12 48 10 168 16 - 528 840 240 1368
14 17 &8 -2 6 12 48 10 168 16 - 528 840 240 1368
15 2 15 4 6 20 48 40 168 8 - 22 840 30 1368
15 8 6 -4 3 20 48 40 168 8 - 22 840 15 1368
16 7 5 5 3 2 48 10 12 272 - 22 28 480 1368
16 9 2 -5 6 2 48 10 12 272 - 22 28 480 1368
17 3 13 -4 3 20 48 40 168 8 - 22 840 15 1368
17 12 9 4 6 20 48 40 168 8 - 22 840 30 1368
17281 0 O 4 2 6 10 24 16 - 22 56 60 72
1728 2 0 O 4 2 6 10 24 16 - 22 56 60 72
ord(p, n) 1 5 6 10 12 8 - 22 28 15 36
Algl: Total (sec) 5.273 5383 4998 5.273 5.054 5.712 - 5.218 5.547 5.327 5.218
Algl: Avg. (sec) 122 125 116 122 A17 132 - 121 129 124 121
Alg2: Total (sec) | 71.347 77.883 84.20 166.8 * * * * * *
Alg2: Avg. (sec) | 1.659 1.811 1.958 3.879 * * - * * * *

Table 6: Elliptic curves over [F,, where p =19
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J a b a d3 ds dr di1 di3 di7 dig das dag d31 d3r

0 O 1 0 2 8 12 4 6 32 36 - 28 10 24

0O 0 5 0 2 8 12 4 6 32 36 - 28 10 24

1 2 19 2 8 24 24 11 6 288 9 - 7 10 456

1 4 6 -2 8 24 24 22 6 288 18 - 14 10 456

2 8 7 A4 8 4 3 5 84 16 171 - 35 320 456

2 16 1 4 8 4 6 10 84 16 342 - 70 320 456
17281 0 O 2 8 12 4 6 32 36 - 28 10 24
1728 5 0 O 2 8 12 4 6 32 36 - 28 10 24
4 7 9 1 8 4 21 6 156 96 9 - 28 30 456

4 14 21 -1 8 4 42 3 156 96 18 - 28 30 456

5 13 20 4 8 4 6 10 84 16 342 - 70 320 456

5 3 16 -4 8 4 3 5 84 16 171 - 35 320 456

6 15 16 -8 8 24 42 5 84 288 45 - 28 320 36

6 7 22 8 8 24 21 10 84 288 90 - 28 320 36

7 16 14 -9 2 4 24 11 84 288 45 - 42 30 36

7T 9 2 9 2 4 24 22 84 288 90 - 21 30 36

8 12 22 -8 8 24 42 5 84 288 45 - 28 320 36

8 1 13 8 8 24 21 10 84 288 90 - 28 320 36

9 17 12 -7 8 24 12 10 12 16 180 - 105 10 456

9 11 5 7 8 24 12 5 12 16 180 - 210 10 456
10 14 18 4 8 4 6 10 84 16 342 - 70 320 456
10 5 19 -4 8 4 3 5 84 16 171 - 35 320 456
11 6 11 5 8 8 24 12 84 16 9 - 14 320 36
11 12 18 -5 8 8 24 12 84 16 18 - 7 320 36
12 10 3 3 2 24 3 5 84 16 180 - 28 30 12
12 20 7 -3 2 24 6 10 84 16 180 - 28 30 12
13 4 15 4 8 4 6 10 84 16 342 - 70 320 456
13 8 12 -4 8 4 3 5 84 16 171 - 35 320 456
14 20 6 -6 2 4 21 12 12 288 9 - 105 320 456
14 17 14 6 2 4 42 12 12 288 18 - 210 320 456
15 18 10 -3 2 24 6 10 84 16 180 - 28 30 12
15 13 8 3 2 24 3 5 84 16 180 - 28 30 12
16 11 1 -1 8 4 42 3 156 96 18 - 28 30 456
16 22 10 1 8 4 21 6 156 96 9 - 28 30 456
17 5 13 2 8 24 24 11 6 288 9 - 7 10 456
17 10 15 -2 8 24 24 22 6 288 18 - 14 10 456
18 9 5 6 2 4 42 12 12 288 18 - 210 320 456
18 18 4 -6 2 4 21 12 12 288 9 - 105 320 456
19 1 21 O 2 8 12 4 6 32 36 - 28 10 24
19 2 3 0 2 8 12 4 6 32 36 - 28 10 24
20 21 4 -6 2 4 21 12 12 288 9 - 105 320 456
20 19 17 6 2 4 42 12 12 288 18 - 210 320 456
21 3 17 3 2 24 3 5 84 16 180 - 28 30 12
21 6 9 -3 2 24 6 10 84 16 180 - 28 30 12
22 22 2 -6 2 4 21 12 12 288 9 - 105 320 456
22 21 20 6 2 4 42 12 12 288 18 - 210 320 456
ord(p, n) 2 4 3 1 6 16 9 - 7 10 12
Algl: Total (sec) | 7.145 6.920 7.689 7.470 7.086 7.085 7.909 - 7.800 7.085 7.469
Algl: Avg. (sec) A57 147 164 .159 151 151 .168 - 166 .151 .159
Alg2: Total (sec) | 75.63 94.75 110.4 146.38 * * * * * *
Alg2: Avg. (sec) |1.609 2.016 2.349 3.114 * * * * * *

Table 7: Elliptic curves over [F,, where p = 23
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J a b ap|ds ds dy din diz dir dig doz dag dzi da
0 O 1 0| 2 2 4 10 12 32 18 44 - 10 24
0 O 2 0| 2 2 4 10 12 32 18 44 - 10 24
1 18 22 5| &8 2 14 40 39 288 18 11 - 30 456
1 14 2 5| 8 2 7 40 78 288 18 22 - 30 456
2 21 16 0| 2 2 4 10 12 32 18 44 - 10 24
2 206 12 0] 2 2 4 10 12 32 18 44 - 10 24
3 12 5 -4 8 20 & 120 6 16 360 264 - 320 36
3 19 11 41 8 20 8 120 3 16 360 264 - 320 36
4 15 28 -1| 8 20 3 120 21 16 72 506 - 10 36
4 2 21 1] 8 20 6 120 42 16 72 253 - 10 36
5 4 21 6 2 20 3 40 42 96 360 22 - 320 456
5 16 23 6| 2 20 6 40 21 96 360 11 - 320 456
6 20 18 6 2 20 3 40 42 96 360 22 - 320 456
6 22 280 6| 2 20 6 40 21 96 360 11 - 320 456
7 16 26 -4 8 20 8 120 6 16 360 264 - 320 36
7 6 5 41 8 20 8 120 3 16 360 264 - 320 36
8 24 10 1| 8 20 6 120 42 16 72 253 - 10 36
8 9 22 -1 8 20 3 120 21 16 72 506 - 10 36
9 5 19 8| & 12 3 10 39 16 18 132 - 30 456
9 20 7 8 8 12 6 10 78 16 18 132 - 30 456
10 22 14 3| 2 12 8 10 12 288 18 11 - 320 36
10 1 265 -3 2 12 & 10 12 288 18 22 - 320 36
11 6 17 5| &8 2 14 40 39 288 18 11 - 30 456
11 24 20 -5| 8 2 7 40 78 288 18 22 - 30 456
12 1 27 6 2 20 3 40 42 96 360 22 - 320 456
12 4 13 6| 2 20 6 40 21 96 360 11 - 320 456
13 8 13 -9 2 20 14 10 3 16 360 88 - 320 456
13 3 17 91 2 20 7 10 6 16 360 88 - 320 456
14 10 9 6 2 20 3 40 42 96 360 22 - 320 456
14 11 14 6| 2 20 6 40 21 96 360 11 - 320 456
15 14 1 21 8 12 7 10 42 288 360 11 - 320 36
15 27 8 -2 8 12 14 10 21 288 360 22 - 320 36
16 26 6 -2| 8 12 14 10 21 288 360 22 - 320 36
16 17 19 21 8 12 7 10 42 288 360 11 - 320 36
1728 1 0 10| 8 2 8 120 12 16 360 264 - 320 36
1728 2 0 41 8 4 8 120 3 16 360 264 - 320 36
1728 4 0 -10] 8 2 8 120 12 16 360 264 - 320 36
1728 8 0 -4 8 4 8 120 6 16 360 264 - 320 36
18 7 15 21 8 12 7 10 42 288 360 11 - 320 36
18 280 4 -2 8 12 14 10 21 288 360 22 - 320 36
19 19 20 10| 8 2 & 120 12 16 360 264 - 320 36
19 18 15 -10| 8 2 & 120 12 16 360 264 - 320 36

Table 8: Elliptic curves over IF,, where p =29, j =0,...,19.
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J a b aq d3 ds dr di1 di3 dir  dig daz  dag d31 d3r
20 23 12 -6 2 20 6 40 21 96 360 11 - 320 456
20 5 9 6 2 20 3 40 42 96 360 22 - 320 456
21 25 8 7 8 12 4 120 21 16 18 11 - 320 12
21 13 6 -7 8 12 4 120 42 16 18 22 - 320 12
22 3 23 -3 2 12 8 10 12 288 18 22 - 320 36
22 12 10 3 2 12 8 10 12 288 18 11 - 320 36
23 27 4 6 2 20 3 40 42 96 360 22 - 320 456
23 21 3 -6 2 20 6 40 21 96 360 11 - 320 456
24 11 7 -9 2 20 14 10 3 16 360 88 - 320 456
24 15 27 9 2 20 7 10 6 16 360 88 - 320 456
25 28 2 0 2 2 4 10 12 32 18 44 - 10 24
25 25 16 0 2 2 4 10 12 32 18 44 - 10 24
26 9 11 3 2 12 8 10 12 288 18 11 - 320 36
26 7 1 -3 2 12 8 10 12 288 18 22 - 320 36
27 17 24 -2 8 12 14 10 21 288 360 22 - 320 36
27 10 18 2 8 12 7 10 42 288 360 11 - 320 36
28 13 3 8 8 12 6 10 78 16 18 132 - 30 456
28 23 24 -8 8 12 3 10 39 16 18 132 - 30 456

ord(p,n) 2 2 1 10 3 16 18 11 - 10 12
Algl: Total (sec) 12.52 12.69 11.75 12.742 11.86 12.63 12.03 12.91 - 12,58 12.19

Algl: Avg. (sec) .205 .208 .193 .209 .194 207 197 217 - .203 .200
Alg2: Total (sec) | 110.2 120.1 128.2 263.4 * * * * * *
Alg2: Avg. (sec) | 1.806 1.967 2.102 4.318 * * * * * *

Table 8(continued): Elliptic curves over F,, where p = 29, j = 20, ...,28.
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J a b ap|ds ds dy din diz dir dig dos dog d3zi dar
O 0 1 -4 1 6 6 60 12 288 18 88 280 - 36
0O 0 3 -111 6 3 6 20 12 288 18 264 840 - 36
O 0 5 -7T{3 2 6 60 4 288 18 264 840 - 36
O o0 7 11} 3 6 6 20 12 288 18 264 840 - 36
0 0 11 716 1 6 60 4 288 18 264 840 - 36
0 0 15 41 2 3 6 60 12 288 18 88 280 - 36
1 288 6 -9| 4 6 48 10 12 16 24 22 280 - 152
1 4 7 9 4 3 48 5 12 16 24 11 280 - 152
2 7 17 0o 4 4 6 20 8 32 6 44 56 - 8
2 1 25 0o 4 4 6 20 8 32 6 44 56 - 8
3 18 26 -2| 6 10 48 5 12 16 120 11 28 - 12
3 7 20 2| 3 5 48 10 12 16 120 22 28 - 12
4 22 18 0o 4 4 6 20 8 32 6 44 56 - 8
4 12 21 0o 4 4 6 20 8 32 6 44 56 - 8
5 23 16 2| 3 5 48 10 12 16 120 22 28 - 12
5 21 29 -2| 6 10 48 5 12 16 120 11 28 - 12
6 15 1 -7 3 10 6 60 4 288 18 264 840 - 36
6 11 27 71 6 5 6 60 4 288 18 264 840 - 36
7 6 19 10| 6 4 6 5 56 288 24 33 28 - 152
7 23 17 10| 3 4 6 10 56 288 24 66 28 - 152
8 2 27 31 4 10 6 30 56 16 120 253 28 - 12
8 18 16 -3| 4 5 6 15 56 16 120 506 28 - 12
9 24 14 -2| 6 10 48 5 12 16 120 11 28 - 12
9 30 6 2| 3 5 48 10 12 16 120 22 28 - 12
10 16 30 -1| 3 3 48 5 56 16 120 132 28 - 36
10 20 4 11 6 6 48 10 56 16 120 132 28 - 36
11 17 28 -8 6 5 48 30 56 16 18 11 168 - 152
11 29 12 8| 3 10 48 15 56 16 18 22 168 - 152
12 21 20 -5| 6 4 48 55 56 96 120 22 840 - 4
12 3 13 5/ 3 4 48 110 56 96 120 11 &40 - 4
13 1 29 -8 6 5 48 30 56 16 18 11 168 - 152
13 9 8 8 3 10 48 15 56 16 18 22 168 - 152
14 11 9 2| 3 5 48 10 12 16 120 22 28 - 12
14 6 26 -2| 6 10 48 5 12 16 120 11 28 - 12
15 8 15 6| 4 3 48 110 4 288 6 22 28 - 152
15 10 2 6| 4 6 48 55 4 288 6 11 28 - 152
16 13 5 6| 4 3 48 110 4 288 6 22 28 - 152
16 24 11 6| 4 6 48 55 4 288 6 11 28 - 152
17 30 2 -8 6 5 48 30 56 16 18 11 168 - 152
17 22 23 8 3 10 48 15 56 16 18 22 168 - 152
18 29 4 -4 3 6 6 60 12 288 18 88 280 - 36
18 13 15 41 6 3 6 60 12 288 18 88 280 - 36
19 12 7 -8 6 5 48 30 56 16 18 11 168 - 152
19 15 3 81 3 10 48 15 56 16 18 22 168 - 152

Table 9: Elliptic curves over IF,, where p =31, j =0,...,19.
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J a b aq d3 ds dr di1 di3 dir  dig da3 dag dai d3r
20 25 12 5 3 4 48 110 56 96 120 11 840 - 4
20 8 14 -5 6 4 48 55 56 96 120 22 840 - 4
21 20 22 4 3 6 6 60 12 288 18 88 280 - 36
21 25 5 4 6 3 6 60 12 288 18 88 280 - 36
22 5 21 10 6 4 6 5 56 288 24 33 28 - 152
22 14 9 -10 3 4 6 10 56 288 24 66 28 - 152

1728 1 0 0 4 4 6 20 8 32 6 44 56 - 8
1728 3 0 0 4 4 6 20 8 32 6 44 56 - 8
24 3 25 1 6 6 48 10 56 16 120 132 28 - 36
24 27 24 -1 3 3 48 5 56 16 120 132 28 - 36
25 19 24 7 6 5 6 60 4 288 18 264 840 - 36
25 16 28 -7 3 10 6 60 4 288 18 264 840 - 36
26 14 3 4 6 3 6 60 12 288 18 88 280 - 36
26 2 19 4 3 6 6 60 12 288 18 88 280 - 36
27 27 & -3 4 5 6 15 56 16 120 506 28 - 12
27 26 30 3 4 10 6 30 56 16 120 253 28 - 12
28 10 11 4 6 3 6 60 12 288 18 88 280 - 36
28 28 18 4 3 6 6 60 12 288 18 88 280 - 36
29 9 13 4 1 6 6 60 12 288 18 88 280 - 36
29 19 10 4 2 3 6 60 12 288 18 88 280 - 36
30 26 10 5 1 4 48 110 56 96 120 11 840 - 4
30 17 22 -5 2 4 48 55 56 96 120 22 840 - 4
ord(p,n) 1 1 6 5 4 16 6 11 28 - 4
Algl: Total (sec) 15.27 15.65 15.00 15.27 15.16 15.43 15.43 15.54 15.87 - 15.60
Algl: Avg. (sec) | 228 .234 224 228 226 .230 .230 .232 237 - .233
Alg2: Total (sec) | 127.6 134.0 130.7 1090.0 * * * * * *
Alg2: Avg. (sec) 1.905 2.000 1.950 16.28 * * * * * *

Table 9 (continued): Elliptic curves over F,, where p = 31, j = 20,...,30.
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J a b ap|ds ds dy din diz dir dig dog dog ds1 dar
0O 0 1 -10 3 &8 6 60 12 288 18 528 840 30 -
0O 0 2 -11| 2 24 3 20 12 288 18 176 280 30 -
0 0 3 -1| 3 24 42 60 12 288 18 528 840 30 -
0O 0 5 1] 6 24 3 60 12 288 18 528 840 30 -
0 0 6 10| 6 & 3 60 12 288 18 528 840 30 -
0O 0 9 111 24 6 20 12 288 18 176 280 30 -
1 7 23 3/ 4 4 3 10 12 96 40 528 28 30 -
1 28 3 -3| 4 4 6 5 12 96 40 528 28 30 -
2 30 14 81 3 4 21 5 168 16 18 22 280 30 -
2 9 1 8| 6 4 42 10 168 16 18 22 280 30 -
3 18 1 81 3 4 21 5 168 16 18 22 280 30 -
3 3 8 -8 6 4 42 10 168 16 18 22 280 30 -
4 15 7 41 6 24 6 110 168 16 6 22 28 192 -
4 23 19 4| 3 24 3 55 168 16 6 22 28 192 -
5 17 3 -7 3 4 12 110 168 288 40 22 840 6 -
5 31 24 71 6 4 12 55 168 288 40 22 840 6 -
6 34 6 -2| 2 4 24 30 12 16 40 176 28 192 -
6 25 11 211 4 24 15 12 16 40 176 28 192 -
7 8 21 8| 6 4 42 10 168 16 18 22 280 30 -
7 32 20 81 3 4 21 5 168 16 18 22 280 30 -
8 12 13 0|l 4 & 12 20 24 32 2 22 56 6 -
8 11 30 0| 4 & 12 20 24 32 2 22 56 6 -
9 23 28 213 4 24 15 12 16 40 176 28 192 -
9 18 2 2| 6 4 24 30 12 16 40 176 28 192 -
10 3 31 6| 4 24 42 10 168 288 8 22 28 192 -
10 12 26 6| 4 24 21 5 168 288 8 22 28 192 -
11 5 27 6| 4 24 42 10 168 288 8 22 28 192 -
11 20 31 -6 4 24 21 5 168 288 8 22 28 192 -
12 2 33 -4 3 24 3 55 168 16 6 22 28 192 -
12 8 5 41 6 24 6 110 168 16 6 22 28 192 -
13 27 20 41 6 24 6 110 168 16 6 22 28 192 -
13 34 12 -4 3 24 3 55 168 16 6 22 28 192 -
14 13 11 71 2 4 12 55 168 288 40 22 840 6 -
14 15 14 -7 1 4 12 110 168 288 40 22 &40 6 -
15 20 34 -2 6 4 24 30 12 16 40 176 28 192 -
15 6 13 213 4 24 15 12 16 40 176 28 192 -
16 21 32 1] 6 24 21 60 12 288 18 528 840 30 -
16 10 34 -1| 3 24 42 60 12 288 18 528 840 30 -
17 14 9 10| 6 & 3 60 12 288 18 528 840 30 -
17 19 35 -101 3 & 6 60 12 288 18 528 840 30 -
18 33 8 -2 6 4 24 30 12 16 40 176 28 192 -
18 21 27 213 4 24 15 12 16 40 176 28 192 -
19 31 12 5| 6 &8 24 10 168 16 40 528 28 30 -
19 13 22 51 3 8 24 5 168 16 40 528 28 30 -
Table 10: Elliptic curves over F,, where p =37, j =0,...,19.
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J a b aq d3 ds d7  dn di3 dir  dig da3 dag d31  ds7

20 16 5 4 6 24 6 110 168 16 6 22 28 192 -
20 27 3 4 3 24 3 55 168 16 6 22 28 192 -
21 32 10 2 3 4 24 15 12 16 40 176 28 192 -
21 17 6 -2 6 4 24 30 12 16 40 176 28 192 -
22 19 36 -7 3 4 12 110 168 288 40 22 840 6 -
22 2 29 7 6 4 12 55 168 288 40 22 840 6 -
23 22 30 -3 4 4 6 5 12 96 40 528 28 30 -
23 14 18 3 4 4 3 10 12 96 40 528 28 30 -
24 28 18 -10 3 8 6 60 12 288 18 528 840 30 -
24 1 33 10 6 8 3 60 12 288 18 528 840 30 -
25 9 19 5 3 8 24 5 168 16 40 528 28 30 -
25 36 4 -5 6 8 24 10 168 16 40 528 28 30 -
1728 1 0 2 1 4 24 15 12 16 40 176 28 192 -
1728 2 0 -12 4 4 24 60 12 16 40 176 28 192 -
1728 3 0 -2 2 4 24 30 12 16 40 176 28 192 -
1728 5 0 12 4 4 24 60 12 16 40 176 28 192 -
27 11 15 3 4 4 3 10 12 96 40 528 28 30 -
20 7 9 -3 4 4 6 5 12 96 40 528 28 30 -
28 29 16 -8 6 4 42 10 168 16 18 22 280 30 -
28 5 17 8 3 4 21 5 168 16 18 22 280 30 -
29 35 4 6 4 24 42 10 168 288 8 22 28 192 -
29 29 32 -6 4 24 21 5 168 288 8 22 28 192 -
30 1 35 -2 6 4 24 30 12 16 40 176 28 192 -
30 4 21 2 3 4 24 15 12 16 40 176 28 192 -
31 25 24 6 4 24 42 10 168 288 8 22 28 192 -
31 26 7 -6 4 24 21 5 168 288 8 22 28 192 -
32 4 29 10 6 8 3 60 12 288 18 528 840 30 -
32 16 10 -10 3 8 6 60 12 288 18 528 840 30 -
33 26 22 11 3 24 6 20 12 288 18 176 280 30 -
33 30 28 -11 6 24 3 20 12 288 18 176 280 30 -
34 24 26 -2 6 4 24 30 12 16 40 176 28 192 -
34 22 23 2 3 4 24 15 12 16 40 176 28 192 -
35 6 25 1 6 24 21 60 12 288 18 528 840 30 -
35 24 15 -1 3 24 42 60 12 288 18 528 840 30 -
36 36 2 9 4 24 24 15 168 16 18 22 28 192 -
36 33 16 9 4 24 24 30 168 16 18 22 28 192 -
ord(p, n) 1 4 3 5 12 16 2 22 28 6 -
Algl: Total (sec) |23.45 21.97 22.35 22.30 22.08 21.09 22.74 22.85 22.57 22.68 -
Algl: Avg. (sec) .293 275 279 .279 276 .264 284 .286 282 .284 -

(
(
(

Alg2: Total (sec)
Alg2: Avg. (sec)

169.2 117.7 226.3 977.1
2.115 2221 2.827 12.21

*
*

*
*

*
*

*
*

*
*

*
*

Table 10(continued): Elliptic curves over F,, where p = 37, j =19, ..., 36.




Name

Vita

Adam Leonard Van Tuyl

Place and Date of Birth Welland, Ontario, March 20, 1974

Education

Experience

Awards

Bachelor of Science (Honours in Mathematics)
Majored in Mathematics and Philosophy
Calvin College, Grand Rapids, Michigan
(1992-96)

eTeaching Assistant (Queen’s University)
(Sept. 1996 - May 1997)

eResearch Assistant (Simon Fraser University)
(May 1995 - Aug. 1995)

eTutor (Calvin College)

(Sept. 1994 - May 1996)

eGrader (Calvin College)

(Sept. 1993 - May 1996)

eComputer Lab Assistant (Calvin College)
(Sept. 1993 - May 1996)

eR.S. McLaughlin Fellowship (Queen’s University)
(Sept. 1996 - May 1997)

eWilliam Rink Memorial Prize (Calvin College)
(May 1996)

eNSERC Undergraduate Research Award (Simon Fraser University)
(May 1995 - Aug. 1995)

ePresidential Scholarship (Calvin College)
(Sept. 1992 - May 1996)

87



Bibliography

[At] A.O.L. Atkin, Public email messages. 1990-1992.

[Ca] J.W.S. Cassels, Lectures on Elliptic Curves. Cambridge University Press: Cambridge, 1991.

[Cr] J.E. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press: Cam-
bridge, 1992.

[De] Pierre Deligne, Formes Modulaires et Représentations l-adiques, Seminaire Bourbaki, no.
355. (1968/69).

[Ha] Robin Hartshorne, Algebraic Geometry. Springer-Verlag: New York, 1977.

[HoKu] Kenneth Hoffman, Ray Kunze, Linear Algebre. Prentice-Hall, Inc.: Englewood Cliffs, New
Jersey, 1971.

[Ig] Jun-ichi Igusa, Fibre systems of Jacobian varieties III. (Fibre systems of elliptic curves).
Amer. J. Math. 81 (1959) 453-476.

[Ka] Ernst Kani, Private Conversation, August 1997.

[KaSc] Ernst Kani, Wolfgang Schanz, Modular diagonal quotient surfaces, to appear in Math. Z.

[KaRo] Ernst Kani, Micheal Rosen, Idempotent relations and factors of Jacobians. Math. Ann.
284 (1989) 307-327.

[Lal] Serge Lang, Elliptic Curves: Diophantine Analysis. Springer-Verlag, 1983.

[La2] Serge Lang, Elliptic Functions. 2nd ed. Springer-Verlag, 1987.

[LiHa] Rudolf Lidl, Harald Niederreiter, Introduction to finite fields and their applications. Cam-
bridge University Press: Cambridge, 1986

[Sc1l] Rene Schoof, Ellptic curves over finite fields and the computation of square roots mod p.
Math. Comp. 44 (1985), 483-494.

[Sc2] Rene Schoof, Counting Points on elliptic curves over finite fields. Journal de Théorie des
Nombres de Bordeauz 7 (1995), 219-254.

[Si] Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag: New York, 1986.

[SiTa] Joseph H. Silverman, John Tate, Rational Points on Elliptic Curves. Springer-Verlag: New
York, 1992.

[Sm] Charles Small, Arithmetic of Finite Fields. Marcel Dekker, Inc.: New York, 1991.

[St] Ian Stewart, Galois Theory. Chapman and Hall: London, 1973.

[Wi] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141
(1995), no. 3, 443-551

88



BIBLIOGRAPHY 89

[Yu] Noriko Yui, Explicit form of the modular equation. J. Reine Angew. Math. 299/300 (1978),
185-200.



