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Abstract. Let E be an elliptic curve over a finite field K = Fq , and n 6=

char(K) a prime. Then the field of n-torsion points is constructed by adjoining

the coordinates of all the n-torsion points to K. In this paper we present an

algorithm to calculate the degree of the resulting extension when char(K) 6=

2, 3 and n an odd prime. The algorithm is based upon the characteristic

polynomial of the Frobenius endomorphism and the division polynomials of

E. As an application, we use our algorithm to count the number of rational

points on the modular curve X(n)/Fq when q ≡ 1 (mod n).

1. Introduction

Let E be an elliptic curve over a field K, char(K) 6= 2, 3, given in the Weierstrass
form E : y2 = x3+ax+b. If F is any field extension of K, then the set of F -rational
points of E, denoted E(F ), is the set of points

E(F ) :=
{
(x, y) ∈ F 2

∣
∣ y2 = x3 + ax+ b

}
∪ {O}

where O denotes the point at infinity. An additive group structure can be imposed
on E(F ) via the well known chord and tangent method with O being the identity
element of E(F ). A point P ∈ E(F ) is called an n-torsion point if P + · · ·+ P

︸ ︷︷ ︸

n

=

nP = O. Fix an algebraic closure of K, say K, and let E[n] denote the set of all
n-torsion points in E(K). We define F = KE,n, the field of n-torsion points of E,

to be the smallest subfield of K such that E[n] ⊂ E(F ).
The fields KE,n have appeared in questions related to class field theory (cf. [7]).

The Galois representations of these fields also played an important role in the proof
of Fermat’s Last Theorem. Roughly speaking, the basis of this proof is to show
that certain Galois extensions K of Q cannot be of the form K = KE,n, thereby
leading to the non-existence of a solution. Wiles (cf. [13]) gives a precise overview
of which Galois extensions K/Q can be of the form KE,n for an elliptic curve E/Q.

In this paper we study the case when Q is replaced by K = Fq. In this case
KE,n is completely determined by its degree d = [KE,n : K]. The main result of
this paper is to present an algorithm to calculate d when char(K) 6= 2, 3 and n is
an odd prime distinct from char(K). Although our algorithm is admittedly simple
in that it requires only basic properties about elliptic curves over finite fields, to
our knowledge there is no other reference for a method for calculating d. We also
give an application of our algorithm to compute #X(n)/Fq when q ≡ 1 (mod n).
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Our algorithm is based upon the fact that KE,n is a Galois extension of K,
and thus, there exists an injective group homomorphism ρn : Gal(KE,n/K) ↪→
GL2(Z/nZ). Then, since the the Frobenius automorphism σq ∈ Gal(KE,n/K) gen-
erates this Galois group, we use the fact that the characteristic polynomial of ρn(σq)
is T 2− aET + q ≡ 0 (mod n) where aE = (q+1)−#E(Fq) to demonstrate that in
most cases the degree d can be found using basic linear algebra. Only in the case
where the discriminant of the above equation is divisible by n do we need to invoke
the use of the division polynomials of E.

We restrict ourselves to the case that char(K) 6= 2, 3 in order to utilize the
Weierstrass form of E and to utilize the division polynomials ψn described in Section
4. We also restrict to the case that n is an odd prime. If n = 2, then d is simply
the degree of the splitting field for E : y2 = x3 + ax+ b.

Our presentation is as follows. Section 2 introduces the extension KE,n and
describes some its properties. Section 3 presents the characteristic polynomial of the
Frobenius endomorphism and provides a partial solution to our problem. Section 4
describes the division polynomials of E and how they also give a partial solution.
In the fifth section, we present our algorithm, and we discuss its implementation.
In the sixth section, we discuss the problem of computing the degree of KE,n for
all curves E over Fq. In the final section, we demonstrate how one can use our
algorithm to compute #X(n)(Fq) when q ≡ 1 (mod n).

The author would like to thank Satya Mohit and Srinath Baba for their com-
ments. The author would especially like to thank Ernst Kani for introducing this
problem to him and for his many helpful conversations and discussions.

2. The Field of N-Torsion Points

Let K = Fq be a finite field with char(K) 6= 2, 3. Then an equation for an
elliptic curve E over this field is given by the Weierstrass form E : y2 = x3 +ax+b.
Furthermore, let n ≥ 3 be a prime such that n 6= char(K). The goal of this section
is to present some results, with a reference to their proofs, about KE,n that form
the basis of our algorithm.

We begin by describing the group structure of E[n].

Theorem 2.1 ([11] III.6.2). E[n] is a finite subgroup of E(K) of order n2, and

E[n] ∼= Z/nZ× Z/nZ.

Notice that for all n, O ∈ E[n]. Using Theorem 2.1, we can write E[n] as

E[n] = {O, (x1, y1), . . . , (xm, ym)},
where m = n2 − 1. Taking the coordinates {xi, yi} for every 1 ≤ i ≤ m, and
adjoining them to our base field K, we construct the field of n-torsion points KE,n.
Explicitly,

KE,n := K(E[n]) = K(x1, y1, . . . , xm, ym).

It is clear that the degree d of the extension of KE,n is finite.

Remark 2.2. Let ζn denote an nth root of unity of K. By the Weil pairing, ζn ∈
KE,n ([11] III.6.8). SinceKE,n = Fqd , then ζn ∈ KE,n implies that n = ord(ζn)|qd−
1. So, qd ≡ 1 (mod n), or equivalently, ord(q, n)|d, where ord(q, n) is the order of
q in (Z/nZ)×.
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The field KE,n is a Galois extension of its base field K. For any Galois extension
K ′ of K, an element σ ∈ Gal(K ′/K) induces a map on the K ′-rational points of E.
Moreover, since the group structure is defined over K, the Galois action is linear.
From these facts we obtain the well known Galois representation of Gal(KE,n/K).

Theorem 2.3. Let E be an elliptic curve over K and n ≥ 2 be an prime 6= char(K).
Then there is an injective group homomorphism

ρn : Gal(KE,n/K) ↪→ GL2(Z/nZ)

defined with respect to a basis for E[n].

Computing d, therefore, is equivalent to finding the cardinality of the image of ρn

in GL2(Z/nZ). We can recover more information about d by recalling that K is a
finite field. If K ′ is any Galois extension of K, then Gal(K ′/K) is a cyclic group and
the Frobenius automorphism σq ∈ Gal(K ′/K) generates the Galois group, where
σq : K ′ → K ′ is defined by x 7→ xq. From this fact, we now have:

Corollary 2.4. Let σq ∈ Gal(KE,n/K) be the Frobenius automorphism. Then
d = ord(ρn(σq)) in GL2(Z/nZ).

Proof. Because ρn is injective, | Im(ρn)| = ord(ρn(σq)) in GL2(Z/nZ). ¤

We show below that we can determine the characteristic polynomial of the matrix
ρn(σq) from the elliptic curve E. From this information, we can calculate the order
of ρn(σq) ∈ GL2(Z/nZ) for a fixed E and almost all n.

3. The Characteristic Polynomial of the Frobenius Endomorphism

Let E be an elliptic curve over K and let φq ∈ End(E) be the Frobenius Endo-
morphism defined by

(φq)(P ) =

{
(xq, yq) if P = (x, y) ∈ E(K) and P 6= O
O if P = O .

Then the characteristic polynomial of φq in End(E) is

f(T ) = T 2 − aET + q,

where aE := (q + 1) − #E(Fq) [12]. Restricting φq to E[n] induces an element
φq|E[n] ∈ Aut(E[n]) whose characteristic polynomial is congruent modulo n to
f(T ).

Let σq ∈ Gal(KE,n/K) be the Frobenius automorphism. Then the induced
endomorphism on E is given by the map

(σq)E(P ) =

{
(σq(x), σq(y)) = (xq, yq) if P = (x, y) ∈ E(K) and P 6= O
O if P = O .

Restricting (σq)E to E[n], we note that (σq)E |E[n] = φq|E[n]. Moreover, (σq)E |E[n]

is identified with ρn(σq) in GL2(Z/nZ) via the Galois representation. But now

(σq)E |E[n] ∈ Aut(E[n]), and since Aut(E[n])
∼−→ GL2(Z/nZ) once we pick a ba-

sis, the characteristic polynomial of ρn(σq) will be the same as the characteristic
polynomial of (σq)E |E[n] in Aut(E[n]). In particular, we have

Theorem 3.1. The polynomial

f(T ) = T 2 − aET + q

is congruent modulo n to the characteristic polynomial of ρn(σq) ∈ GL2(Z/nZ).
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From the characteristic polynomial, we can calculate d in a large number of
cases.

Theorem 3.2. Let E be an elliptic curve over the field K = Fq, where, char(K) 6=
2, 3 and n an odd prime 6= char(K). Let chρn(σq)(T ) ≡ T 2 − aET + q (mod n) be

the characteristic polynomial of ρn(σq). Suppose that chρn(σq) factors over Fn as

chρn(σq)(T ) = (T − α)(T − β).

Let c =
(

a2

E−4q
n

)

, where
(

n

)
is the Legendre symbol. Then,

(i) if c = 1, then α, β ∈ Fn and d = lcm(ord(α, n), ord(β, n)), where ord(t, n) :=
the order of t in F×

n ;
(ii) if c = −1, then α, β ∈ Fn2\Fn, β = αn, and d is equal to the order of

α ∈ F×

n2 ;
(iii) if c = 0, then α = β ∈ Fn and d = ord(α, n) or d = n ord(α, n).
(iv) if n > 4q or

(
q
n

)
= −1, then c 6= 0, in which case we can determine d

explicitly.

Proof. Fix once and for all a basis for GL2(Z/nZ). Observe that a2
E − 4q is the

discriminant of the characteristic polynomial. So, if c = 1, then (i) follows from the
fact that then chρn(σq) factors in Fn and has two distinct roots, α and β, in this
field. Furthermore, α and β are the eigenvalues of the matrix ρn(σq). Thus,

ρn(σq) ∼
(
α 0
0 β

)

,

with respect to our basis. Hence, the order of ρn(σq) is equal to lcm(ord(α, n),
ord(β, n)).

For (ii), α,β ∈ Fn2 since they are roots of chρn(σq)(T ), a monic irreducible
polynomial of degree 2 in Fq[T ]. Moreover, since β is a conjugate of α, we can
write it as β = αn since σn generates Gal(Fn2/Fn). Thus

ρn(σq) ∼
(
α 0
0 αn

)

.

But then it is clear that the order of ρn(σq) is equal to the order of α in F×

n2 .
If (iii) holds, then there is only one eigenvalue, i.e. α = β ∈ Fn. But then, by

the Jordan Canonical Form,

ρn(σq) ∼
(
α 0
0 α

)

or ρn(σq) ∼
(
α 1
0 α

)

,

depending upon the dimension of the eigenspace. If ρn(σq) is diagonal, then the
order of ρn(σq) is the order of α in Fn. However, suppose that the other case

occurs. We observe that ρn(σq)
t ∼

(
α 1
0 α

)t

=

(
αt tαt−1

0 αt

)

for all t ∈ Z. Letting

t = n, we find that ρn(σq)
t is a diagonal matrix with α’s along the diagonal since

ρn(σq) ∈ GL2(Z/nZ). Thus, the order of ρn(σq) must be nord(α, n).
Finally, we have |aE | ≤ 2

√
q (see [11] V.1.1) . If n > 4q, then n > |a2

E − 4q|,
from which it is clear that

(
a2

E−4q
n

)

6= 0. Assuming that
(

q
n

)
= −1, then c 6= 0

since c = 0 implies
(

q
n

)
= 1. Thus (iv) holds. ¤
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Corollary 3.3. Let E be an elliptic curve over K and let d = [KE,n : K], where, as

before, n 6= char(K). If c =
(

a2

E−4q
n

)

, then we have the following relations between

d and n:

(i) if c = 1, then d|(n− 1).
(ii) if c = 0, then d|n(n− 1).

(iii) if c = −1, then d| ord(q, n)(n+ 1) and ord(q, n)(n+ 1)|n2 − 1.
(iv) ord(q, n)|d always holds.

Proof. The first two assertions follow from Theorem 3.2 since ord(α, n)|n − 1 for
all α ∈ Fn. The last assertion was noted in Remark 2.2.

For statement (iii), we note that since
(

a2

E−4q
n

)

= −1, d is equal to the order of

α ∈ Fn2 , where α is one of the roots of the characteristic polynomial. Let g be a
generator of F×

n2 . So, α = gt for some t ∈ Z. Moreover, from Theorem 3.1 we have

ααn = q ∈ Fn2 . Let b = ord(q, n). Then (gt)(1+n)b = α(1+n)b = (α(1+n))b = qb = 1.
Since d is the order of gt, we have d| ord(q, n)(n+ 1). ¤

In Theorem 3.2 the value of aE does not determine d completely in the case
c = 0. However, in many cases, the following criterion allows us to determine d.

Proposition 3.4. Let E be an elliptic curve over K and let

f(T ) = T 2 − aET + q = (T − δ)(T − γ)
be the factorization of f(T ) in Q[T ]. Suppose that a2

E − 4q ≡ 0 (mod n), and so,

f(T ) has a repeated root α modulo n. Set d∗ = ord(α, n). If n2 - 1+qd∗−(δd∗

+γd∗

),
then d = [KE,n : K] = nd∗.

Proof. We know from Theorem 3.2 that d = d∗ or d = nd∗. Suppose that d = d∗.
Since E[n] is a subgroup of E(Fqd∗ ), we must have n2|#E(Fqd∗ ). However, from

[11] V.2.4, we know that #E(Fqd∗ ) = (1 + qd∗

)− (δd∗

+ γd∗

). This contradicts our

assumption that n2 - (1 + qd∗

)− (δd∗

+ γd∗

). ¤

Remark 3.5. In Example 5.4 we will show that the converse is false.

4. The Division Polynomials of an Elliptic Curve

Following [9], we introduce the division polynomials ψ̃n ∈ K[x, y] which are
defined inductively as follows:

ψ̃−1 = −1, ψ̃0 = 0, ψ̃1 = 1, ψ̃2 = 2y

ψ̃3 = 3x4 + 6ax2 + 12bx− a2

ψ̃4 = 4y(x6 − 5ax4 + 20bx3 − 5ax2 − 4abx− 8b2 − a3)

ψ̃n = ψ̃2m+1 = ψ̃m+2ψ̃
3
m − ψ̃m−1ψ̃

3
m+1, m ≥ 2

2yψ̃n = 2yψ̃2m = ψ̃m(ψ̃m+2ψ̃
2
m−1 − ψ̃m−2ψ̃

2
m+1), m ≥ 3,

where a, b ∈ K. Via induction on n, one can show that ψ̃n is a polynomial.
We define the polynomials ψn ∈ K[x], which we call the nth division polynomial

of E, as follows. We eliminate all y2-terms from ψ̃n by using the relation E : y2 =
x3 + ax + b. The resulting polynomial ψ̃′

n(x, y) is either in K[x] if n is odd or in

yK[x] if n is even. We define ψn(x) = ψ̃′

n(x, y) if n is odd, ψn(x) = ψ̃′

n(x, y)/y if n
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is even. By induction on n, one can describe the behavior of ψ2
n as a polynomial in

K[x]. In fact, one finds that for n odd

ψ2
n(x) = n2xn2

−1 + lower order terms.

The following proposition, which can be found in [8], connects the root of the
nth-division polynomial of E with the x-coordinate of an n-torsion point.

Proposition 4.1. If P = (x(P ), y(P )) ∈ E(K)\{O}, with P 6∈ E[2], then

[n]P = O if and only if ψn(x(P )) = 0.

From the division polynomial ψn we can find the x-coordinates of the n-torsion
points. Supposing that n is odd, then ψn is a polynomial in x. If we suppose that
K = Fq and factor ψn over Fq[x], we get ψn = f1 · · · fr where each fi is irreducible in

Fq[x]. We also notice that the fi’s are distinct. Indeed, let xi ∈ Fq be a root of ψn.

Then to xi we can associate two n-torsion points, namely, Pi1 = (xi,
√

x3
i + axi + b)

and Pi2 = (xi,−
√

x3
i + axi + b). The expression in the square root is not zero since

that would imply that Pi1 = Pi2 is a 2-torsion point. Since ψn has degree n2
−1
2 , it

can have at most n2
−1
2 distinct roots. But because there are n2 − 1 torsion points

besides the point at infinity, each root of ψn must be distinct.
We show how to determine d up to a factor of 2 from the way ψn factors in Fq[x].

Theorem 4.2. Let n be an odd prime, and let K = Fq with n 6= char(K). Suppose
that ψn factors in K[x] as ψn = f1 · · · fr. Set di = deg(fi) and let l := lcm({di}ri=1).
Let K ′

E,n = K(x1, x2, . . . , xn2−1), where the xi’s are the x-coordinates of the n-

torsion points. Then [K ′

E,n : K] = l. Furthermore, [KE,n : K ′

E,n] = 1 or 2;
equivalently, d = l or d = 2l.

Proof. The field K ′

E,n is the splitting field of ψn over K. Since K is a finite field,

[K ′

E,n : K] is equal to to the least common multiple of the degrees of ψn’s irreducible
factors over K.

To prove the second claim, suppose that KE,n 6= K ′

E,n. Then there exists some

xi such that yi =
√

x3
i + axi + b 6∈ K ′

E,n = Fql . But then K ′

E,n(yi) = Fq2l , and
every element of x ∈ Fql has a square root in Fq2l . In particular, all yi ∈ Fq2l .
Thus, in this case [KE,n : K ′

E,n] = 2. ¤

5. An Algorithm for Computing [KE,n : K] and its Implementation

So far we have presented only partial solutions (Theorems 3.2 and 4.2) to the
problem of calculating d = [KE,n : K]. In this section we introduce an algorithm
which combines these solutions. We assume that the following has been given:

(i) q = pr, where K = Fq, and char(K) = p 6= 2, 3.
(ii) n, a prime such that n 6= char(K) and n ≥ 3.

(iii) a and b, the coefficients of the elliptic curve E over K in Weierstrass form.

From Theorem 3.2, if we know aE and if
(

a2

E−4q
n

)

6= 0, then we can calculate d.

If
(

a2

E−4q
n

)

= 0, then we know that d = nord(α, n) or ord(α, n). By using the

factorization of ψn in K[x], we can distinguish between the two possibilities.
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Lemma 5.1. Suppose
(

a2

E−4q
n

)

= 0. Let ψn = f1 · · · fr be the factorization of ψn

into irreducible factors in K[x]. Set l = lcm ({deg(fi)}ri=1) and let d∗ = ord(α, n).
Then

d = [KE,n : K] =

{
d∗ if d∗ = l or d∗ = 2l
nd∗ otherwise.

Proof. From Theorem 4.2, we know that d = l or d = 2l. Suppose that d∗ = l.
Then if d = nd∗, then l 6= d and 2l 6= d since n is an odd prime. So, d = d∗.
Similarly suppose that d∗ = 2l. If d = nd∗, then l 6= d and 2l 6= d. So, d = d∗.

Now suppose that d∗ 6= l and d∗ 6= 2l. Then d 6= d∗ since d = l or d = 2l. So,
d = nd∗. ¤

The above lemma is the final piece in our algorithm to compute d. We summarize
below.

Algorithm 5.2. Suppose that a, b, q, and n have been given.

1. Compute aE = (1 + q)−#E(Fq) by computing #E(Fq) (See below)

2. Let c =
(

a2

E−4q
n

)

, where
(

n

)
is the Legendre symbol.

3. If c = 1, then T 2 − aET + q ≡ (T − α)(T − β) (mod n), where α 6= β ∈ Fn,
and

d = lcm(ord(α, n), ord(β, n))
else if c = −1, then T 2 − aET + q ≡ (x− α)(x− αn) ∈ Fn2 , and

d = order of α in F×

n2 .

else if c = 0, then T 2 − aET + q ≡ (T − α)2, α ∈ Fn. Then
1. d∗ = ord(α, n).
2. T 2 − aET + q = (T − δ)(T − γ) ∈ C[x].
3. If n2|(1 + qd∗

)− (δd∗ − γd∗

) then
1. Construct ψn and factor ψn in Fq[x].
2. Let l = lcm({deg(fi)}ri=1) where ψn = f1 · · · fr.
3. if d∗ = l or d∗ = 2l then

d = d∗.
else

d = nd∗

else
d = nd∗

Remark 5.3. The number aE is fundamental to the Algorithm 5.2. By definition,
computing aE is equivalent to computing #E(Fq). However, computing the number
of points on an elliptic curve over a finite field K = Fq, even when q = p, is a non-
trivial matter for large p. Since the appearance of Schoof’s ground breaking paper
[9] on this topic, much work has gone into this question. For a nice exposition on a
variety of methods to compute #E(Fp) one should consult [10],[2], and [4]. In [10],
Schoof claims that for small primes a simple brute force method of counting points
on the curve is efficient. For large primes a less naive method must be used. (In
[10], a small prime is defined to be p < 200. However, faster computers have made
this bound obsolete.) Hence, to use Algorithm 5.2 for large p, one will need to first
implement an efficient algorithm for computing #E(Fp).

Example 5.4. We give an example of two curves, E1 and E2, such that aE :=
aE1

= aE2
, and a2

E−4q ≡ 0 mod n, but the degrees of their field of n-torsion points
differ by a factor of n.
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Let E1 : y2 = x3 + 2 and E2 : y2 = x3 + 6x + 2 be two curves over K = F7.
We wish to compute the degree d of the field of 3-torsion points. By counting the
number of K-rational points on each curve, we find that aE := aE1

= aE2
= −1.

So, the characteristic polynomials are equal modulo n, specifically,

chρ(σq,E1)(T ) ≡ chρ(σq,E2)(T ) ≡ (T − 1)2 (mod 3).

Both matrices have repeated eigenvalues since
(

a2

E−4q
n

)

=
(
−27
3

)
= 0. So α ≡ 1

(mod 3), since α2 ≡ q (mod 3) and q ≡ 1 (mod 3). Since ord(α, 3) = 1, then
[KE1,3 : K] = 1 or 3 by Theorem 3.2. Similarly for [KE2,3 : K]. Forming the
3-division polynomials for each curve and factoring over Fq[x], we get

ψ3,E1
≡ 3x4 + 24x ≡ 3x(x+ 4)(x+ 2)(x+ 1) (mod 7),

and

ψ3,E2
≡ 3x4 + 36x2 + 24x− 36 ≡ (x+ 1)(3x3 + 4x2 + 4x+ 6) (mod 7).

From this factorization, we deduce that [KE1,3 : K] = 1, but [KE2,3 : K] = 3.
We also point out that the curve E2 : y2 = x3 + 6x + 2 is a counterexample to

the converse of Proposition 3.4. In this case n2 | #E(Fqd∗ ) since 32 | (1 + 7− aE)
with d∗ = 1. However, d 6= 1, but d = 3, as we have just shown.

We now discuss some of the methods we used to implement our algorithm. As
noted in Remark 5.3, the computation of aE is integral to this algorithm. If one is
interested in only small p (or small q), and if E is an elliptic curve over Fq given in
Weierstrass form, i.e., E : y2 = x3 + ax + b, the following formula enables one to
calculate aE :

(1) aE = −
∑

x∈Fq

(
x3 + ax+ b

Fq

)

,

where
(

Fq

)

is the quadratic character defined by

(
x

Fq

)

:=







1 if ∃y ∈ Fq such that y2 = x
−1 if @y ∈ Fq such that y2 = x
0 if x = 0.

In the case that q = p, then the above is simply the Legendre symbol. Our imple-
mentation of Algorithm 5.2 to calculate the tables at the end of the paper made
use of (1) to calculate aE since we were concerned with primes p < 100.

In the case that
(

a2

E−4q
n

)

= −1, it was shown in Theorem 3.2 that d is equal

to the order of α ∈ Fn2 , where α is a root of f(T ) ≡ T 2 + aET + q (mod n). To
calculate the order of α we need to construct Fn2 and identify α with an element
in this field. To construct Fn2 , we can use the fact that f is irreducible in the ring

Fn[T ]. Hence Fn2
∼= Fn[T ]

(f) . Since f(α) ≡ 0 (mod n) we have T ≡ α (mod f). So,

we only need to discern the order of T in Fn[T ]/(f).
Algorithm 5.2 also relies on ψn to distinguish between the two possible values for

d in the case that a2
E − 4q ≡ 0 (mod n). However, as n becomes large, the degree

of ψn grows like n2
−1
2 . This is unfortunate since this implies that as n increases,

the algorithm slows down since we need to factor ψn. The natural question arises:
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is there any fast alternative to factoring ψn to determine to determine d in the case
that a2

E − 4q ≡ 0 (mod n)? This is a question that requires further attention.

6. Computing [KE,n : K] for all E over Fq

In this section we discuss how to compute d = [KE,n : K] for all elliptic curves
over a finite field. We first describe how to construct all the elliptic curves over a
fieldK. Then we describe how to compute d for an elliptic curve E and its quadratic
twist E′ by computing d for only one of the two curves. For some motivation, see
the next section.

Let E be an elliptic curve over K = Fq given in Weierstrass form, E : y2 =
x3+ax+b. We can associate with every curve E an invariant, called the j-invariant,

where jE = 1728 4a3

4a3+27b2 . If we pick j ∈ K such that j 6= 0, 1728, we can construct
a curve E with this j-invariant, namely,

(2) Ej : y2 = x3 − 27j

j − 1728
x+

54j

j − 1728
.

In fact, under the hypothesis that j 6= 0, 1728 and K is a finite field, then there
are only two curves up to K-isomorphism over K with this j-invariant: the above
curve and its quadratic twist,

Ej,twist : y2 = x3 − 27j

j − 1728
g2x+

54j

j − 1728
g3,

where g is not a square in K. See [11] X.5 for more on twisting.
We see from the formula for jE that j = 0 if and only if E : y2 = x3 + b. Over K,

there are always k = |F×

q /(F
×

q )6| such curves, and we have k = 6 if q ≡ 1 (mod 3)

and k = 2 if q 6≡ 1 (mod 3). If q ≡ 1 (mod 3) these curves are E : y2 = x3+g where
g ∈ F×

q /(F
×

q )6. If q 6≡ 1 (mod 3), then there are only two curves, E : y2 = x3 + 1

and its quadratic twist E′ : y2 = x3 + g, where g is not a square in Fq. The case
for j = 1728 is similar.

From the above, we can construct all curves E over K by running through all
j ∈ Fq and find the coefficients of the curve with this j-invariant using (2), or in
the case that j = 0 and j = 1728, E : y2 = x3 + 1 and E : y2 = x3 + x respectively.
Then, depending upon the q, we form the twists of the curves. This is the strategy
we used in the appendix to find the coefficients of all the elliptic curves over K. We
can then pass the coefficients onto our algorithm to compute d.

However, as we show below, we need only compute d = [KE,n : K] for one curve
in the twist class if j 6= 0, 1728.

Lemma 6.1. Let E be an elliptic curve over K = Fq with j 6= 0, 1728, and let E′

denote the quadratic twist of E over K. Then aE = −aE′ .

Proof. Section III.3.1 of [2] gives a proof that #E(K) + #E ′(K) = 2q + 2. The
conclusion follows from using this identity and the definition of aE and aE′ . ¤

Proposition 6.2. Let E be an elliptic curve over K = Fq with j 6= 0, 1728. Let
E′ be the quadratic twist of E over K, and suppose that n 6= char(K) is prime. Let
d = [KE,n : K] and d′ = [KE′,n : K]. Then

(i) if 2 - d, then d′ = 2d.
(ii) if 4|d, then d′ = d.
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(iii) if 2|d but 4 - d, then

d′ =

{
d
2 if ord(q, n) ≡ 1 (mod 2)
d if ord(q, n) ≡ 0 (mod 2)

.

Proof. By Lemma 6.1, we have aE = −aE′ . Let σE (resp. σE′) be the Frobenius
automorphism that generates Gal(KE,n/K) (resp. Gal(KE′,n/K)). Furthermore,
let ρn : Gal(KE,n/K) → GL2(Z/nZ) (resp. ρ′n : Gal(KE′,n/K) → GL2(Z/nZ))
be the injective homomorphism as given in Theorem 2.3. Then it is clear that
ord(ρn(σE)) = ord(−ρ′n(σE′)) since both have the same characteristic polynomial
T 2 − aET + q ≡ 0 (mod n).

Suppose that 2 - d. We have that ρn(σE)d = −Id
2ρ

′

n(σE′)d = I2 where I2 is the
identity matrix. By hypothesis, ρ′n(σE′)d = −I2, and so ord(ρ′n(σE′)) = 2d.

We now suppose that 4|d. Since 2|d, we have ρ′n(σE′)d = I2. So d′|d. Sup-

pose that d′ < d. If d′ is even, then −Id′

2 ρ
′

n(σE′)d′

= I2, but this implies that

ord(ρn(σE)) = d′, a contradiction. If d′ is odd then ρn(σE)d′

= −I2. But this gives

a contradiction since ρn(σE)2d′

= I2, but 4 - 2d′.
Now consider the case that 2|d, but 4 - d. Again, we have ρ′n(σE′)d = I2. So,

d′|d. If d′ is even, then ρn(σE)d′

= I2, and so d|d′, which implies that d = d′. On

the other hand, if d′ is odd, ρn(σE)d′

= −I2. But then 2d′ = d. So we have two
possibilities, d′ = d or d

2 .
We show how the parity of ord(q, n) can distinguish between the two possibilities.

We make use of the fact that ord(q, n) divides both d and d′ by Corollary 3.3.
Suppose that ord(q, n) ≡ 0 (mod 2). Then 2|d′ and 2|d. We know that 2|d (by
hypothesis) and we saw that if 2|d′, then d′ = d. If ord(q, n) ≡ 1 (mod 2) then
we observe that ord(q, n)| d2 . We also note that both matrices ρn(σE) and ρ′n(σE′)

have determinant ≡ q (mod n). In particular, det(ρn(σE)
d
2 ) ≡ 1 (mod n). Since

ρn(σE)d = I2, we can deduce that ρn(σE)
d
2 ∼ I2 or ∼ −I2. But ρn(σE)

d
2 6∼ I2

since d = ord(ρn(σE)), so ρn(σE)
d
2 ∼ −I2, which implies that d′ = d

2 . ¤

7. An application to the modular curve X(n)/Fq

In this section we sketch out how we can use Algorithm 5.2 to count the number
of Fq-rational points on the modular curve X(n)/Fq when q ≡ 1 (mod n). The
material of this section allows us to partially verify our algorithm for the special
cases of n = 3 and n = 5, and q = p when p ≡ 1 (mod n).

For this section we are appealing to the theory concerning the modular curve
X(n) (cf. [6] [3]). For this entire discussion we assume the following conditions
hold: first, n 6= char(K) = p is an odd prime and p 6= 2, 3, and secondly, K = Fq

contains all the nth roots of unity ζn ∈ K, or equivalently, q ≡ 1 (mod n).
The curve X(n) is a smooth, geometrically irreducible, projective curve over the

field K. We now let Y (n) = X(n)\cusps, where the cusps are K-rational points.
Then, for any K ′ ⊃ K, the K ′-rational points of Y (n) can be interpreted in terms
of 3-tuples (E,P,Q)/K′ . Here E is an elliptic curve over K ′, and P,Q ∈ E(K) are
K ′-rational points which form a basis for E[n].

For any extension K ′ ⊃ K, there exists [6] a natural bijection between the
points x ∈ Y (n)(K ′) and the isomorphism classes of 3-tuples, i.e., Y (n)(K ′) ←→
Iso. Classes(E,P,Q)/K′ . In other words, we identify each y ∈ Y (n)(K ′) with a 3-
tuple (E,P,Q)/K′ , where (E,P,Q)/K′ is a representative of its isomorphism class.



COMPUTING THE DEGREE OF THE FIELD OF N-TORSION POINTS 11

The group Gn = Sl2(Z/nZ)/ ± 1 naturally acts on X(n) and on Y (n) via the
the above bijection as follows:

M · (E,P,Q) = (E, aP + cQ, bP + dQ)

where M =

(
a b
c d

)

∈ Gn. In addition there is a Gn-equivariant morphism

f : X(n) → X(1) ∼= P1
K defined by (E,P,Q) 7→ jE and cusps 7→ ∞, such that

Gn\X(n) ∼= X(1). In other words, the point x = (E,P,Q) is taken to the j-
invariant of the elliptic curve E and the cusps of X(n), which are K-rational, are
taken to ∞, the point at infinity of P1

K .
Since Gn acts faithfully we have

(3) deg(f) = |SL2(Z/nZ)/± 1| = n(n2 − 1)

2
.

Moreover, ifK(X(n)) andK(X(1)) are the functions field ofX(n) andX(1) respec-
tively, then it can be shown that K(X(n))Gn = K(X(1)). Since K(X(n))/K(X(1))
is Galois [6], the ramification index ex(f) of f : X(n) → X(1) and x ∈ X(n) de-
pends only on f(x) = y, so we can write ey = ex(f). From [6], if char(K) 6= 2, 3,
we have

ey =







n if y =∞
3 if y = 0
2 if y = 1728

where ey = 1 otherwise.
We note that for every tuple (E,P,Q)/K that since P,Q ∈ E(K), then E[n] ⊂

E(K), thereby implying [KE,n : K] = 1. In particular, if (E,P,Q) ∈ X(n)(K),
then [KE,n : K] = 1. Conversely, if E is an elliptic curve with [KE,n : K] = 1, then

E gives rise to to precisely deg(f)
ejE

rational points on X(n). Thus, this gives us the

following result:

Proposition 7.1. Let K = Fq, n 6=char(K) = p is an odd prime, p 6= 2, 3 and
q ≡ 1 (mod n). Then

#X(n)(Fq) =
deg(f)

e∞
+ c0

deg(f)

e0
+ c1728

deg(f)

e1728
+ cdeg(f)

where

c0 = #{E/Fq | [KE,n : K] = 1 and jE = 0},
c1728 = #{E/Fq | [KE,n : K] = 1 and jE = 1728},

c = #{E/Fq | [KE,n : K] = 1 and jE 6= 0, 1728}.

Our algorithm enables us to compute the values of c1728, c0, and c, thus giving
us a means to compute #X(n)(Fq). As an application, we can compute some of
the coefficients of the zeta function of X(n)/Fq. Recall that

ZX(n)/Fq
(T ) = exp

(
∞∑

i=1

#X(n)(Fqi)

i
T i

)

.

Since ZX(n)/Fq
(T ) is a rational function, we need to compute only finitely many

#X(n)(Fqi) to determine all the coefficients. However, there is a question of
whether this is a practical approach since the implementation of our algorithm
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prime p c0 c1728 c #X(3)(Fp)
7 1 0 0 8
13 1 1 0 14
19 1 0 1 20
31 1 0 2 32
37 1 1 2 38
43 1 0 3 44
61 1 1 4 62
67 1 0 5 68
73 1 1 5 74
79 1 0 6 80
97 1 1 7 98

Table 1. Comparing the Output of the Algorithm to #X(3)(Fp)

prime p c0 c1728 c #X(5)(Fp)
11 0 0 0 12
31 1 0 0 32
41 0 1 0 42
61 1 1 0 62
71 0 0 1 72

Table 2. Comparing the Output of the Algorithm to #X(5)(Fp)

requires the arithmetic of Fq. In our implementation, we chose to consider only the
case when q = p.

We conclude by specializing to the case that n = 3 and n = 5 and consider
X(n)/K where K = Fq and q ≡ 1 (mod n). The above discussion allows us to
check our tables in a limited sense. We need the following formula that computes
the genus of X(n):

(4) 2g(X(n))− 2 = deg(f)



2g(X(1))− 2 +
∑

y∈X(1)

(1− 1

ey
)



 .

Here, g(X(n)) and g(X(1)) refer to the genus of X(n) and X(1) respectively (see
[5] IV.2.4). Since X(1)/K

∼= P1
K , we know that g(X(1)) = 0. We compute the

genus of X(3) and X(5) and find that g(X(3)) = g(X(5)) = 0. So, X(n) ∼= P1
K for

n = 3, 5. We deduce that #X(n)(Fq) = q + 1 for both n = 3, 5.
For n = 3, we used our algorithm and Proposition 7.1 to compute #X(n)(Fp)

for all primes p < 100 and p ≡ 1 (mod 3). Comparing this to the expected result
of p + 1, we see that in all cases they agree. Table 1 contains our results for
this comparison. The first column contains all primes p < 100 such that p ≡ 1
(mod 3). Columns two through four contain the values of c0, c1728, and c that
were obtained via our algorithm. In the last column, we use our observed data to
evaluate #X(3)(Fp).

The case n = 5 is very similar. The only difference is that we must use p ≡ 1
(mod 5). The observed results again agree with the expected results for all p < 100.
We include a table (Table 2) for this situation.
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8. Tables

We include three tables to give a flavor of the output of Algorithm 5.2. The
tables contain all elliptic curves over K = Fp for p = 7, 11, and 19, and calculates
the field of n-torsion points for all primes 3 ≤ n ≤ 19. For each p, we constructed
all elliptic curves over the field K as described in Section 6. In the tables, the first
four columns correspond to the following information about the elliptic curves:

(i) j is the j-invariant of the curve. We write 1728 if j ≡ 1728 (mod p).
(ii) a and b are the coefficients of the Weierstrass equation for E, that is,

E : y2 = x3 + ax+ b.
(iii) ap = (p+ 1)−#E(Fp). From this column, we can also deduce #E(Fp).

The remaining columns give the value of dn, where dn = [KE,n : K], and n is a
prime 3 ≤ n ≤ 19. Reading across the table, we get an elliptic curve and the value
of dn for this curve for various n. The row at the end of each table contains the
ord(p, n), that is, the order of p in (Z/nZ)×.

The tables were generated using Algorithm 5.2 implemented in Maple V Release
4.

j a b ap d3 d5 d7 d11 d13 d17 d19

0 0 1 -4 3 24 - 120 12 288 18
0 0 2 -1 1 24 - 120 12 288 18
0 0 3 -5 6 8 - 40 12 288 9
0 0 4 5 3 8 - 40 12 288 18
0 0 5 1 2 24 - 120 12 288 9
0 0 6 4 6 24 - 120 12 288 9
1 4 6 -3 4 4 - 10 168 16 114
1 1 1 3 4 4 - 10 168 16 57
2 3 1 -4 3 24 - 120 12 288 18
2 6 6 4 6 24 - 120 12 288 9
3 6 2 -1 3 24 - 120 12 288 18
3 5 5 1 6 24 - 120 12 288 9
4 5 4 -2 6 4 - 10 168 96 30
4 3 3 2 3 4 - 10 168 96 15
5 2 3 2 3 4 - 10 168 96 15
5 4 4 -2 6 4 - 10 168 96 30

1728 1 0 0 4 8 - 10 24 32 12
1728 3 0 0 4 8 - 10 24 32 12

ord(p, n) 1 4 - 10 12 16 3
Table 3. Elliptic curves over Fp, where p = 7
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j a b ap d3 d5 d7 d11 d13 d17 d19

0 0 1 0 2 4 12 - 24 32 12
0 0 2 0 2 4 12 - 24 32 12

1728 1 0 0 2 4 12 - 24 32 12
1728 2 0 0 2 4 12 - 24 32 12

2 1 9 4 8 3 21 - 168 96 60
2 4 6 -4 8 6 42 - 168 96 60
3 9 4 -6 2 3 24 - 168 16 18
3 3 10 6 2 6 24 - 168 16 9
4 8 6 3 2 10 42 - 12 16 15
4 10 4 -3 2 5 21 - 12 16 30
5 2 7 5 8 4 3 - 168 16 114
5 8 1 -5 8 4 6 - 168 16 57
6 5 1 1 8 6 24 - 12 16 60
6 9 8 -1 8 3 24 - 12 16 60
7 7 8 -2 8 10 3 - 12 288 18
7 6 9 2 8 5 6 - 12 288 9
8 10 2 4 8 3 21 - 168 96 60
8 7 5 -4 8 6 42 - 168 96 60
9 4 3 -2 8 10 3 - 12 288 18
9 5 2 2 8 5 6 - 12 288 9

10 3 5 3 2 10 42 - 12 16 15
10 1 7 -3 2 5 21 - 12 16 30

ord(p, n) 2 1 3 - 12 16 3
Table 4. Elliptic curves over Fp, where p = 11
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j a b ap d3 d5 d7 d11 d13 d17 d19

0 0 1 8 3 12 6 120 12 144 -
0 0 2 7 2 12 6 40 12 144 -
0 0 4 -1 3 4 6 120 12 144 -
0 0 5 -7 1 12 6 40 12 144 -
0 0 8 -8 6 12 6 120 12 144 -
0 0 10 1 6 4 6 120 12 144 -
1 15 8 2 1 12 48 10 168 16 -
1 3 7 -2 2 12 48 10 168 16 -
2 1 17 -8 6 12 6 120 12 144 -
2 4 3 8 3 12 6 120 12 144 -
3 13 12 7 6 12 6 40 12 144 -
3 14 1 -7 3 12 6 40 12 144 -
4 5 9 1 6 20 6 120 12 144 -
4 1 15 -1 3 20 6 120 12 144 -
5 6 7 4 6 20 48 40 168 8 -
5 5 18 -4 3 20 48 40 168 8 -
6 4 11 -1 3 20 6 120 12 144 -
6 16 12 1 6 20 6 120 12 144 -
7 12 14 0 4 2 6 10 24 16 -
7 10 17 0 4 2 6 10 24 16 -
8 14 10 3 4 12 48 120 168 8 -
8 18 4 -3 4 12 48 120 168 8 -
9 8 3 -4 3 20 48 40 168 8 -
9 13 5 4 6 20 48 40 168 8 -

10 10 18 5 3 2 48 10 12 272 -
10 2 11 -5 6 2 48 10 12 272 -
11 18 2 6 4 20 6 10 12 48 -
11 15 16 -6 4 20 6 10 12 48 -
12 16 6 -6 4 20 6 10 12 48 -
12 7 10 6 4 20 6 10 12 48 -
13 17 4 2 3 12 48 10 168 16 -
13 11 13 -2 6 12 48 10 168 16 -
14 9 1 2 3 12 48 10 168 16 -
14 17 8 -2 6 12 48 10 168 16 -
15 2 15 4 6 20 48 40 168 8 -
15 8 6 -4 3 20 48 40 168 8 -
16 7 5 5 3 2 48 10 12 272 -
16 9 2 -5 6 2 48 10 12 272 -
17 3 13 -4 3 20 48 40 168 8 -
17 12 9 4 6 20 48 40 168 8 -

1728 1 0 0 4 2 6 10 24 16 -
1728 2 0 0 4 2 6 10 24 16 -

ord(p, n) 1 2 6 10 12 8 -
Table 5. Elliptic curves over Fp, where p = 19
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Nombres de Bordeaux 7 (1995) 219-254.

[11] Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag: New York (1986).

[12] John Tate, The Arithmetic of Elliptic Curves. Invent. Math. 23 (1974), 179-206.
[13] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141

(1995) 443–551.

Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L

3N6, Canada

E-mail address: vantuyl@mast.queensu.ca


