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Abstract

Given a tree Γ, we consider the path ideal It(Γ), that is, the ideal where every

generator corresponds to a path of length t in Γ. When this path ideal is regarded

as a facet ideal of a simplicial complex, that is, we view every generator of the

path ideal as a facet of this simplicial complex, we show this simplicial complex is

actually a simplicial tree. By using a property of a simplicial tree due to Faridi, we

prove that R/It(Γ) is sequentially Cohen-Macaulay.
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Introduction

A tree is a simple graph in which any two vertices are connected by exactly one

path. A directed tree is a tree whose edges have been assigned a direction. A path

of a tree is a sequence of vertices {xi1 , . . . , xil
} such that from each of its vertices

there is an edge to the next vertex in the sequence. A path is also often denoted

by xi1 · · ·xil
. Throughout this project, a tree refers to a directed tree with edges

whose orientation is away from the root, a designated vertex of the tree. Precise

definitions will be given in Chapter 1. Using the definition of a path in a tree, we

consider an ideal whose generators correspond to the paths of the same length in

a tree. This ideal is the path ideal first introduced by Conca and De Negri [3].

Please see the precise definition below.

The goal of this project is to study the properties of the path ideal of a tree.

The main result of this project is to show that the path ideal of a tree is sequentially

Cohen-Macaulay. Understanding further properties of the path ideal of any graph

is the goal of my future research. Given below is an overview of the main results

and structure of this project.

Let V = {x1, x2, . . . , xn} be a finite set. Then a simplicial complex ∆ is a

subset of the power set of V , such that:

• {xi} ∈ ∆ for each i = 1, . . . , n, and

• if F ∈ ∆ and G ⊂ F then G ∈ ∆.

An element of ∆ is a face. The maximal faces under inclusion are called facets.

We denote the simplicial complex ∆ with facets F1, . . . , Fs by

∆ = 〈F1, . . . , Fs〉.
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The subcomplex of a simplicial complex ∆ is a simplicial complex generated by

a subset of the facet set of ∆. That is, ∆′ = 〈Fi1 , . . . , Fir
〉 is a subcomplex of ∆,

if {Fi1 , . . . , Fir
} ⊂ {F1, . . . , Fs}. A standard reference for simplicial complexes is

Stanley’s book [22].

A relationship between trees and simplicial complexes can be built by using

square-free monomial ideals, that is, an ideal generated by monomial, terms

of the form m = xa1

1 · · ·x
an
n where 0 ≤ ai ≤ 1. The path ideal of the tree Γ is

an ideal generated by all paths of length t − 1 (length of a path = the number of

vertices in this path −1), denoted It(Γ):

It(Γ) = ({xi1 · · ·xit
| xi1 · · ·xit

is a path of length t− 1 in Γ }).

When t = 2, we call this ideal the edge ideal, denoted I(Γ). Recall that the defi-

nition of an edge ideal for any graph is an ideal generated by all edges in a graph G

and denoted I(G) = ({xixj | {xi, xj} is an edge of the graph G}) (see [24]). This

ideal is a square-free monomial ideal. The path ideal was first defined by Conca

and De Negri in [3] and P. Brumatti and A.F. da Silva use this notion to study the

cycle graph (see [1]).

We define the facet ideal of a simplicial complex ∆ to be I(∆), the ideal

generated by all square-free monomials xi1xi2 · · ·xit
, where {xi1 , xi2 , . . . , xit

} is a

facet of ∆. Thus

I(∆) = ({xi1 . . . xit
| {xi1 , xi2 , . . . , xit

} is a facet of ∆}).

This notion was first defined by Sara Faridi in [10] and studied in [11],[12].

An example is illustrated in Figure 1 and Figure 2:

Figure 1
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Given a tree Γ as in Figure 1, the root is x1. We can find the path ideal

generated by all paths of length 3 (i.e. there are 4 vertices in every path)

I4(Γ) = (x1x2x3x4, x1x6x8x9).

The generators of It(Γ) can also be viewed as the facets of a simplicial complex.

For example, with Γ and I4(Γ) as above, consider the simplicial complex:

∆ = 〈{x1, x2, x3, x4}, {x1, x6, x8, x9}〉.

We can visualize this simplicial complex as Figure 2:

Figure 2

This simplicial complex ∆ consists of two filled tetrahedrons. All the vertices,

edges, triangles and the tetrahedrons themselves are the faces of this simplicial

complex. The two tetrahedrons are facets because they are the maximal faces.

This example shows how to build a relationship between a tree Γ and a simpli-

cial complex ∆ by using the path ideal It(Γ). When we view the generators of the

path ideal as all the facets of a simplicial complex, the path ideal of the tree Γ is

just the facet ideal of the corresponding simplicial complex, i.e.

It(Γ) = I(∆).

In this paper, we will prove R/It(Γ) is sequentially Cohen-Macaulay. We recall

the relevant definitions here. An element F ∈ R is a regular element on R/I if

F̄ = (F + I) is not a zero divisor of R/I. A sequence F1, . . . , Fm of R is called a

regular sequence on R/I if

(1) F1 is regular on R/I, and

(2) Fi is regular on R/(I, F1, · · · , Fi−1), for i = 2, . . . , m.
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All maximal regular sequence have same length, and any regular sequence can be

extended to a maximal regular sequence [6, Corollary 18.10]. The depth of R/I,

denoted depth(R/I), is the length of the longest maximal sequence contained in

m = (x1, . . . , xn). The (Krull) dimension of R, denoted dimR, is

dim R = sup{n | P0 ( P1 ( · · · ( Pn is a chain of prime ideals in R}.

A ring R/I is Cohen-Macaulay if depth(R/I) = dim(R/I). Let M be a graded

module over R = k[x1, . . . , xn]. We call M sequentially Cohen-Macaulay if

there is a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Ms = M

of M by graded R-modules such that Mi/Mi−1 is Cohen-Macaulay for all i, and

dimMi/Mi−1 < dim Mi+1/Mi for all i, where dim denotes Krull dimension. The

above notions can be found in [6].

Sequentially Cohen-Macaulay modules were first introduced by Stanley [22].

Herzog and Hibi [17] gave a classification of sequentially Cohen-Macaulay quo-

tients R/I in terms of the Alexader dual of I, when I is a square-free monomial

ideal. This classification extended a criterion of Eagon and Reiner [5] for Cohen-

Macaulay quotients. Recently many authors have been interested in classifying or

identifying (sequentially) Cohen-Macaulay graphs. The graph G is a (sequentially)

Cohen-Macaulay graph if R/I(G) is (sequentially) Cohen-Macaulay, where I(G)

is the edge ideal of this graph G. J.Herzog and T.Hibi classified Cohen-Macaulay

bipartite graphs in [14]. S. Faridi showed that all simplicial trees (to be defined

below) are sequentially Cohen-Macaulay [11]. C.A. Francisco and T. Hà studied

how adding “whiskers”, a kind of leaf, changes the sequentially Cohen-Macaulay

structure. C. A. Francisco and A. Van Tuyl proved that all chordal graphs are

sequentially Cohen-Macaulay [8]. Recently A. Van Tuyl and R.H. Villarreal com-

plement and extend recent work on this problem by determining when the edge

ideal of a bipartite graph is (sequentially) Cohen-Macaulay [23].

The main result of this project is:



5

Theorem 0.1. (Corollary 4.10) Let It(Γ) be a path ideal of a tree Γ. Then

R/It(Γ) is sequentially Cohen-Macaulay for all t ≥ 2.

To give the proof, we use the notion of a simplicial tree given in [11]. Let

∆ = 〈F1, . . . , Fn〉 be a simplicial complex with facets F1, . . . , Fn. A facet F of ∆ is

called a leaf if there exists another facet H 6= F ∈ ∆ such that F ∩G ⊆ F ∩H for

all facet G 6= F . A connected simplicial complex ∆ is a simplicial tree if every

nonempty subcomplex of ∆ has a leaf. We show

Theorem 0.2. (Theorem 4.9) For all t ≥ 2 the path ideal It(Γ) of a tree Γ is

the facet ideal of a simplicial tree.

By applying a result of Faridi that the facet ideals of simplicial trees are se-

quentially Cohen-Macaulay, Theorem 0.1 then follows.

In Chapter 1 we introduce the basic terminology of graph theory. We also

introduce simplicial complexes and simplicial trees. Facet ideals and path ideals

are two important ideals to connect a tree and a simplicial complex. They are

introduced in Chapter 2. We also introduce the relation between the Stanley-

Reisner ideal and facet ideal. At the end of Chapter 2, we give the definition of

a graded resolution. In Chapter 3 we introduce Cohen-Macaulay and sequentially

Cohen-Macaulay rings, two nice classes of rings. The first three chapters give the

basic knowledge for this project. In Chapter 4, the main part of this project, we

prove our two main results, Theorem 0.1 and Theorem 0.2. We end with Chapter

5 by describing some future research questions.



CHAPTER 1

Combinatorial Objects

In this chapter we introduce the definitions and notations from combinatorics

used throughout this project.

1. Some Graph Theory

Definition 1.1. (graph, vertex, edge) [20] A graph is a tuple G = (VG, EG)

which consists of VG, a nonempty set of vertices (or nodes), and EG, unordered

pairs of elements of VG, called edges. Each edge has either one or two vertices

associated with it, called its endpoints. An edge is said to connect its endpoints.

Example 1.2. A labeled graph on 5 vertices and 6 edges:

Figure 1

Here VG = {v1, . . . , v5} and

EG = {{v1, v2}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}, {v3, v5}}.

Definition 1.3. (loop, multiple edge, multigraph, simple graph) [20] A

loop is an edge whose endpoints are the same. Multiple edges are two or more

edges connecting the same two vertices. The term multigraph refers to a graph

in which multiple edges between nodes are allowed. A graph in which each edge

connects two different vertices and where no two edges connect the same pair of

6
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vertices is called a simple graph . Equivalently, we can say that a simple graph is

a graph that contains no loops or multiple edges.

Example 1.4. Consider the three graphs below. The first graph is a simple

graph because there is no more than one edge between any two vertices and no

loops. The second graph is a multigraph because there exist two pairs of vertices

connected by two edges in each pair. The third graph is also a multigraph because

there are two loops. There is also one pair of vertices connected by two edges.

Figure 2

Definition 1.5. (path, length) A path in a simple graph is a sequence of

vertices {vi1 , . . . , vil
} such that from each of its vertices there is an edge to the next

vertex in the sequence. The length of a path is the number of edges in this path.

The first vertex is called the start vertex and the last vertex is called the end

vertex.

Notation 1.6. In order to simplify the expression of a path, we denote vi1 · · · vit

as the path of length t− 1. This means a path starting at vi1 and ending at vit
. It

follows that an edge is a path of length 1 and is denoted by vivj , (i 6= j).

Example 1.7. Consider the graph of Example 1.2. We say {v1, v4, v2, v3, v5}

is a path of length 4 with start vertex v1 and end vertex v5.

Definition 1.8. (directed graph, directed tree, rooted tree) [20] A di-

rected graph (or digraph) G = (VG, EG) consists of a nonempty set of vertices

VG and a set of directed edges (or arcs) EG. Each directed edge is associated
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with an ordered pair of vertices. The directed edge associated with the ordered pair

(u, v) is said to start at u and end at v.

Definition 1.9. (tree, forest, directed tree, rooted tree) [20] A tree is a

graph in which any two vertices are connected by exactly one path. A forest is a

graph in which any two vertices are connected by at most one path. A directed

tree is a directed graph which would be a tree if the directions on the edges were

ignored. A tree is called a rooted tree if one vertex has been designated, called

the root, in which case the edges have a natural orientation, towards or away from

the root.

Example 1.10. Let Γ be the directed rooted tree below. The arrows denote

the direction.

Figure 3

The graph Γ is a tree since there is a unique path between pairs of vertices.

Here the vertex v1 is the root, and the direction of every edge is away from the

root. The vertex set of Γ is VΓ = {v1, v2, . . . , v12} and the directed edge set of Γ is

EΓ = {(v1, v2), (v2, v4), (v4, v8), (v4, v9), (v9, v12), (v1, v3), (v3, v5), (v3, v6), (v3, v7),

(v6, v10), (v6, v11)}.

Definition 1.11. (degree, leaf ) The degree of a vertex is the number of

edges adjacent to it. We use deg x to denote the degree of the vertex x. A vertex

that has degree 1 is called a leaf .



Chapter 1. Combinatorial Objects 9

Example 1.12. Use the graph of Example 1.10. The degrees of the vertices

v8, v12, v5, v7, v10 and v11 are 1, so they are leaves of Γ. We also have deg v1 =

deg v2 = deg v9 = 2, deg v4 = deg v6 = 3 and deg v3 = 4. The paths of various

lengths are given below:

paths of length 2 = {v1v2v4, v2v4v8, v4v9v12, v1v3v5, v1v3v6, v1v3v7, v3v6v10, v3v6v11}

paths of length 3 = {v1v2v4v8, v1v2v4v9, v2v4v9v12, v1v3v6v10, v1v3v6v11}

paths of length t ≥ 4 = ∅

Definition 1.13. (cycle) A closed (simple) path, with no repeated vertices

other than the starting and ending vertices is a cycle. A directed cycle graph is

a directed version of a cycle, with all the edges being oriented in the same direction.

The cycle with n vertices is denoted Cn. The number of vertices in Cn equals the

number of edges, and every vertex has degree 2; that is, every vertex has exactly

two edges incident with it. A cycle is also a path such that the start vertex and

end vertex are the same.

Example 1.14. The right-hand graph below is a cycle graph with a cycle

C6 = {v1v2v3v4v5v6} in it.

Figure 4

Lemma 1.15. Let Γ be a connected graph. Then Γ is a tree if and only if Γ has

no cycles.

Proof. Assume there is a cycle {v1, . . . , vi, . . . , vn, v1} in the tree Γ. Then

there are two different paths connecting v1 and vi, that is, {v1, v2, . . . , vi} and

{vi, vi+1, . . . , vn, v1}. This contradicts Definition 1.9. The converse is the statement
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that if a connected simple graph is without a cycle, we have there is only one path

between pairs of vertices. This means the graph is a tree. �

2. Simplicial complexes

The basic terminology of simplicial complexes is introduced below.

Definition 1.16. (power set) If S is a set, then the power set of S, denoted

P (S), is the set of all subsets of S.

Example 1.17. If S = {a, b, c}, then

P (S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

The following definitions can be found in [22].

Definition 1.18. (simplicial complex, face, facet, subcomplex ) Let V =

{v1, v2, . . . , vn} be a finite set. Then an (abstract) simplicial complex ∆ is a

subset of the power set P (V ) of V , such that:

• {vi} ∈ ∆ for each i = 1, . . . , n, and

• if F ∈ ∆ and G ⊂ F, then G ∈ ∆.

An element of ∆ is a face. The second condition implies ∅ is a face of ∆. The

maximal faces under inclusion are called facets. If F ∈ ∆, then the dimension of

F , is dimF = |F | − 1, where |F | = number of vertices of F . The dimensions of the

vertices and edges are 0 and 1, respectively. We set dim ∅ = −1. We denote the

simplicial complex ∆ with facets F1, . . . , Fs by

∆ = 〈F1, . . . , Fs〉.

The subcomplex of a simplicial complex ∆ is a simplicial complex generated by a

subset of the facet set of ∆. That is, ∆′ = 〈Fi1 , . . . , Fir
〉 is a subcomplex of ∆ if

{Fi1 , . . . , Fir
} ⊂ {F1, . . . , Fs}.

Definition 1.19. (pure) A simpicial complex ∆ is pure if all the facets have

the same dimension.

Definition 1.20. (dimension of a simplicial complex) The dimension

of a simplicial complex ∆ is given by dim ∆ = max{dimF | F ∈ ∆}.



Chapter 1. Combinatorial Objects 11

Example 1.21. Given the simplicial complex ∆ = 〈{v1v2v4}, {v1v3}, {v3v4}〉

with facets F1 = {v1, v2, v4}, F2 = {v1, v3} and F3 = {v3, v4}, we can draw ∆ as

Figure 5

We have dim∆ = 2, because dim F1 = 2 and all other facets have dimensions

less than or equal to 1.

Definition 1.22. (f-vector) Let ∆ be a simplicial complex of dimension d−1.

Let fi denote the number of faces of dimension i in ∆, written as fi=fi(∆). The

f-vector of ∆ is the d-tuple, f(∆) = (f0, f1, . . . , fd−1).

Remark 1.23. It follows directly from the definition that

f0 = |V |, the number of vertices in ∆, and

f−1 = 1, because ∅ ∈ ∆ and dim ∅ = −1.

Example 1.24. Consider the simplicial complex ∆ = 〈v1v2v3v4, v3v5, v4v5, v1v5〉.

To draw the picture, we know the facet {v1, v2, v3, v4} is a tetrahedron. For this

tetrahedron {v1, v2, v3, v4}, all triangles {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4},

the edges of the triangles {v3, v5}, {v4, v5}, {v1, v5} and vertices v1, . . . , v5 are in-

cluded in this facet. The other three facets are three edges: {v3, v5}, {v4, v5}, {v1, v5}.

Then ∆ looks like Figure 6. So there is one tetrahedron, four triangles, nine edges

and five vertices in this simplicial complex. Then the f -vector is f(∆) = (5, 9, 4, 1).

Definition 1.25. [11] (leaf of a simplicial complex ) Let ∆ = 〈F1, . . . , Fn〉

be a simplicial complex with facets F1, . . . , Fn. A facet F of ∆ is called a leaf if it

is the only facet or if there exists another facet H 6= F ∈ ∆ such that F ∩G ⊆ F ∩H

for all facets G 6= F .
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Figure 6

Example 1.26. Consider the simplicial complex with facets F1 = {x1, x2, x3}, F2 =

{x3, x4, x5}, and F3 = {x4, x5, x6} (see Figure 7). Then F1 and F3 are leaves since

we can use H = F2.

Figure 7

Indeed,

F1 ∩ F2 = {x3} ⊆ F1 ∩H

F1 ∩ F3 = ∅ ⊆ F1 ∩H

F3 ∩ F1 = ∅ ⊆ F3 ∩H

F3 ∩ F2 = {x4, x5} ⊆ F3 ∩H.

However, F2 is not a leaf since there is no facet H such that

F2 ∩ F1 = {x3} ⊆ F2 ∩H and

F2 ∩ F3 = {x4, x5} ⊆ F2 ∩H.

Definition 1.27. (free vertex) In a simplicial complex, a vertex is a free

vertex if it belongs to only one facet.



Chapter 1. Combinatorial Objects 13

Lemma 1.28. If F is a leaf in a simplicial complex ∆, then F has a free vertex.

Proof. [22] Suppose the facet F is a leaf in ∆. By definition, there is another

facet H ∈ ∆ such that F ∩G ⊆ F ∩H , where G 6= F and H 6= F . So there must

exist a vertex x ∈ F , but x /∈ H . It follows x /∈ (F ∩H) and x /∈ (G∩F ) ⊆ (H∩F ).

Thus this vertex x is only in F . �

Example 1.29. The converse statement of Lemma 1.28 is not true, as shown

in this example. Consider the simplicial complex ∆ = 〈F1, F2, F3〉, where F1 =

{v1, v2, v3}, F2 = {v2, v4, v5} and F3 = {v3, v5, v6}.

Figure 8

Every facet has a free vertex but no facet is a leaf of ∆. For example, the vertex

v1 is free in facet F1, and we know F2 ∩F1 = {v2} and F3 ∩F1 = {v3}. But we can

not find a facet containing these two vertices together.

Definition 1.30. (Simplicial tree, simplicial forest) A connected simpli-

cial complex ∆ is a simplicial tree if every nonempty subcomplex of ∆ has a leaf.

A simplicial complex is a simplicial forest if every nonempty subcomplex of ∆

has a leaf.

Example 1.31. The simplicial complex in Example 1.26 is a simplicial tree.

The simplicial complex ∆ = 〈v1v2v3, v1v2v4, v1v3v4, v2v3v4, v3v5v6〉 is not a simpli-

cial tree (see Figure 9). Though facet F = {v3, v5, v6} is a leaf and has free vertices

v5 and v6, any facet in the subcomplex ∆′ = 〈v1v2v3, v1v2v4, v1v3v4, v2v3v4〉 is not

a leaf, i.e., for any facet F ∈ ∆′, there is no facet H ∈ ∆ such that F ∩G ⊆ F ∩H

for all facets G 6= F .
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Figure 9



CHAPTER 2

Monomial Ideals and Resolutions

Now that we have some basic knowledge in graph theory, in this chapter we

will introduce the researched objects in this paper, the edge ideal and the path

ideal. We first give the definition of a square-free monomial ideal in a polynomial

ring. The edge ideal, the path ideal, the facet ideal and the Stanley-Reisner ideal

introduced below are all examples of square-free monomial ideals. In Chapter 1,

we use vi to denote a vertex in a graph. If we regard a vertex as a variable in the

ring R = k[x1, . . . , xn], we can also use xi to denote a vertex.

1. Square-free mononial ideals

Definition 2.1. (monomial, square-free monomial ideal) Let k[x1, . . . , xn]

denote the polynomial ring in the variables x1, . . . , xn with coefficients in field

k. A monomial in k[x1, . . . , xn] is a term of the form M = xa1

1 xa2

2 · · ·x
an
n . We say

M is square-free if 0 ≤ ai ≤ 1 for all i. An ideal I is a (square-free) monomial

ideal if I is generated by (square-free) monomials.

Example 2.2. I = (x3x4, x1x2x3) is a square-free monomial ideal in k[x1, x2, x3, x4].

Definition 2.3. (Stanley-Reisner ideal, Stanley-Reisner ring) If ∆ is a

simplicial complex on V∆ = {x1, · · · , xn}, then the Stanley-Reisner ideal is

I∆ = (xi1 · · ·xir
| {xi1 , · · · , xir

} /∈ ∆) ⊆ k[x1, . . . , xn].

The generators of I∆ correspond to the nonfaces of ∆. The Stanley-Reisner ring

is the quotient ring

k[x1, . . . , xn]/I∆.

Example 2.4. Consider the simplicial complex ∆ = 〈{x1, x2, x4}, {x1, x3}, {x3, x4}〉.

Then the nonfaces are

{x2, x3}, {x1, x3, x4}, {x1, x2, x3}, {x2, x3, x4}, {x1, x2, x3, x4}.

15
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Figure 1

Thus, the Stanley-Reisner ideal I∆ is given by

I∆ = (x2x3, x1x3x4, x1x2x3, x2x3x4, x1x2x3x4).

Note that our set of generators is not a minimal set of generators. For exam-

ple, since x2x3 ∈ I∆, it follows from the definition of an ideal that x1x2x3x4 =

(x1x4)(x2x3) ∈ I∆. Thus, if remove the generator x1x2x3x4 from the above list,

the remaining generators still generate I∆. More precisely, I∆ is generated by the

minimal nonfaces of ∆. So, in our example,

I∆ = (x2x3, x1x3x4).

Remark 2.5. I∆ is always a square-free monomial ideal. In fact, we have a

bijection:

{simplicial complexes} ←→ {square-free monomial ideals}

given by ∆ 7−→ I∆.

We introduce the facet ideal, a monomial ideal associated to a simplicial com-

plex. Facet ideals were first defined by Sara Faridi [10].

Definition 2.6. (facet ideal, facet complex) [10]

• Let ∆ be a simplicial complex over V = {x1, . . . , xn}. The set V corre-

sponds to the n variables x1, . . . , xn in a polynomial ring R = k[x1, . . . , xn]

with k a field. The facet ideal of ∆, denoted I(∆), is the ideal generated

by all square-free monomials xi1xi2 · · ·xit
, where {xi1 , xi2 , . . . , xit

} is a

facet of ∆. Thus I(∆) = (xi1 · · ·xit
| {xi1 , xi2 , . . . , xit

} is a facet of ∆).

• Let I = (M1, . . . , Mq) be an ideal of R, where M1, . . . , Mq are square-free

monomials in x1, . . . , xn that form a minimal set of generators for I. We

define the facet complex of I, denoted by δF(I) to be the simplicial
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complex over a set of vertices x1, . . . , xn with facets F1, . . . , Fq, where for

each i, Fi = {xj | xj |Mi, 1 ≤ j ≤ n}.

Example 2.7. Let ∆ = 〈xyz, uvz, yu〉.

Figure 2

Then I(∆) = (xyz, uvz, yu) is the facet ideal of ∆ in R = k[x, y, z, u, v].

Facet ideals also give a one-to-one correspondence between simplicial complexes

and square-free monomial ideals, i.e.

{simplicial complexes} ←→ {square-free monomial ideals}

∆ 7−→ I(∆)

Example 2.8. We show two ways one can associate to a square-free monomial

ideal a simplicial complex. Let I = (x1x3, x1x4, x1x5, x2x3x5, x2x4x5, x3x4x5) be

the Stanley-Reisner ideal (nonface ideal) of a simplicial complex ∆1. Then the

generators correspond to the minimal nonfaces. So, the square-free monomials of

R = k[x1, x2, x3, x4, x5] that are not in I correspond to the faces of the simplicial

complex ∆1. For example, x1x2 is not in I, so there is an edge between x1 and x2.

Through the Stanley-Reisner correspondence we can find all the facets and get the

simplicial complex ∆1 (see Figure 3).

Let I = (x1x3, x1x4, x1x5, x2x3x5, x2x4x5, x3x4x5) be the facet ideal of another

simplicial complex ∆2, i.e. I = I(∆2). The generators are all the facets of ∆2 and

this simplicial complex looks like Figure 4.
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Figure 3

Figure 4

2. Relationships between nonface ideal and facet ideal

In this section we will build up the relationships between the nonface ideal

(Stanley-Reisner ideal) and the facet ideal by using the cover dual and the Alexan-

der dual.

Definition 2.9. (Square-free Alexander dual) Let I be a square-free mono-

mial ideal in R = k[x1, x2, . . . , xn]. The square-free Alexander dual of

I = (x1,1 · · ·x1,s1
, . . . , xt,1 · · ·xt,st

)

is the ideal

I∨ = (x1,1, . . . , x1,s1
) ∩ · · · ∩ (xt,1, . . . xt,st

)
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Example 2.10. Let I(∆) be the facet ideal of the simplicial complex ∆ in

Figure 5. So

I(∆) = (x1x2x3, x1x3x4, x1x2x5, x1x4x5).

Then

I(∆)∨ = (x1, x2, x3) ∩ (x1, x3, x4) ∩ (x1, x2, x5) ∩ (x1, x4, x5)

= (x2x4, x1, x3x5).

Figure 5

Definition 2.11. (minimal vertex cover) A vertex cover for ∆ is a subset

P of V that intersects every facet of ∆, i.e. P ∩ Fi 6= ∅, where Fi is any facet of

∆. If P is a minimal element of the set of vertex covers of ∆, then P is called a

minimal vertex cover.

Example 2.12. Let ∆ be the simplicial complex as in the above Example 2.7.

Then the vertex covers of ∆ are {y, u}, {y, z}, {u, z}, {x, u}, {y, v}, {x, y, u}, {v, y, u}, . . ..

So {y, u}, {y, z}, {u, z}, {x, u}, {y, v} are the minimal vertex covers of ∆.

Definition 2.13. (cover complex ) Let ∆M be the simplicial complex whose

facets are the minimal vertex covers of ∆. We call ∆M the cover complex.

Example 2.14. If ∆ = 〈xyz, uvz, yu〉 is the simplicial complex above in Figure

6, then the cover complex of ∆ is ∆M = 〈yu, yz, uz, xu, yv〉. This simplicial complex

looks like Figure 7.
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Figure 6

Figure 7

Theorem 2.15. If ∆ is a simplicial complex, then ∆M is a dual of ∆; i.e.

(∆M )M = ∆.

See the proof of Proposition 10 in [11].

Example 2.16. Let I = (xyz, uvz, yu). Then this is the facet ideal of Figure

6, but it’s also the Stanley-Reisner ideal of the simplicial complex in Figure 8. The

faces xyz and zuv are missing in the simplicial complex of Figure 8.

Definition 2.17. Let ∆ be a simplicial complex. Then the Alexander dual

of ∆ is the simplicial complex

∆∨ = {F ⊂ V | F c /∈ ∆}, where F c = V − F.

We also have ∆∨∨ = ∆.

Lemma 2.18. If ∆ is a simplicial complex and ∆∨ is the Alexander dual of ∆,

then I∆∨ = I∨∆.

The following examples will show the relationships between the facet ideal and

the nonface ideal step by step.
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Figure 8

Example 2.19. Let I = (xyz, uvz, yu). Then I is the facet ideal of the simpli-

cial complex in Figure 5. Then the facet ideal of ∆M (∆M is the cover complex of

∆) is

J = I(∆M ) = (yu, yz, uz, xu, yv).

Let ∆ be the simplicial complex associated to I via the Stanley-Reisner corre-

spondence. This is the simplicial complex in the previous Example 2.7. Then the

Alexander dual of ∆ is ∆∨ = 〈xy, xvz, uv〉. It looks like Figure 9.

Figure 9

The ideal J is also the nonface ideal of ∆∨, since the nonface ideal of ∆∨ is

(yu, yz, uz, xu, yv). So the facet ideal of ∆M , i.e. I(∆M ), is equal to the nonface

ideal of ∆∨. That is I(∆M ) = I∨∆.
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Example 2.20. The following picture (Figure 10) summarizes the relationships

among the facet ideal, the Stanley-Reisner ideal, cover dual and Alexander dual of

a simplicial complex.

Figure 10

3. Edge ideals and path ideals

In this section, we introduce a special class of monomial ideals, edge ideals and

path ideals. Edge ideals were introduced by Villarreal in [24]. To generalize the

definition of an edge ideal, Conca and De Negri first introduced the definition of a

path ideal in [3]. Edge ideals and path ideals are examples of facet ideals. They

are the simplest type of facet ideals. They are generated by square-free monomials

of degree two or higher and they can be associated to graphs or to complexes via

the Stanley-Reisner correspondence.

Definition 2.21. (edge ideals) The edge ideal I(G) associated to the graph

G is the ideal of R generated by the set of square-free monomials xixj such that xi

and xj are adjacent, that is, {xi, xj} is an edge of G. Hence

I(G) := ({xixj | {xi, xj} ∈ E(G)}).

Definition 2.22. (path ideal) The path ideal It(G) associated to the graph

G is the ideal of R generated by the set of square-free monomials xi1 · · ·xit
such
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that the sequence {vi1 , . . . , vit
} is connected one by one, that is {vi1 , . . . , vit

} is a

path in G.

Remark 2.23. When t = 2, I2(G) = I(G).

Example 2.24. Given a cycle graph as in Figure 11, the root is x1. We can

find the path ideal generated by all paths of length 2 (i.e. there are 3 vertices in

every path)

I3(Γ) = (x1x2x3, x2x3x4, x3x4x5, x4x5x1, x5x1x2).

And the edge ideal is

I(Γ) = I2(Γ) = (x1x2, x2x3, x3x4, x4x5, x5x1).

Figure 11

4. Hilbert Series.

The Stanley-Reisner ring R/I∆ encodes information about the simplicial com-

plex ∆. In the section below we show how some of the information is encoded

and provide background knowledge in order to introduce the definition of graded

resolutions.

Definition 2.25. (homogeneous) A polynomial F ∈ R = k[x1, . . . , xn] is

homogeneous if all its terms have the same degree.

Example 2.26. The following are examples in R = k[x1, x2, x3]:

• 3x1x2x3 + 4x2
1x2 + 7x3

3 ←homogeneous.
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• 3x1x2x3 + 4x7
3 ← not homogeneous.

• a monomial is always homogenous.

Set Ri = {F ∈ R | F homogeous with deg F = i}. Then R is a graded ring, i.e.

R =
⊕

i∈N

Ri and RiRj ⊆ Ri+j .

The set Ri is a vector space over k. A basis for Ri is the set of all monomials of

degree i.

Example 2.27. If R = k[x1, x2], R3 is the k-vector space with basis B =

{x3
1, x

2
1x2, x1x

2
2, x

3
2}.

Lemma 2.28. If R = k[x1, . . . xn], then dimk Ri =
(

n−1+i
i

)

.

Proof. The set Ri consists of all homogeneous elements of R of degree i. A

basis for Ri is the set of all monomials of the form xa1

1 · · ·x
an
n with a1 + · · ·+an = i.

Count integer solutions to this equation and the lemma holds. �

Definition 2.29. An ideal I is homogenous if I is generated by homogenous

elements.

Let Ii = I ∩ Ri. This is the set of all homogenous elements of degree i in I.

Furthermore, Ii is a subspace of Ri. If I is a homogenous ideal of R = k[x1, . . . , xn],

then R/I is also a graded ring. That is

R/I =
⊕

i∈N

(R/I)i.

Here (R/I)i is the k-vector space Ri/Ii. We then have

dimk(R/I)i = dimk Ri − dimk Ii.

We can encode the information about the dimensions into a generating function.

Definition 2.30. (Hilbert series) Let I be a homogenous ideal of R =

k[x1, . . . , xn]. The Hilbert series of R/I is the formal power series.

HS(R/I, t) =
∑

i∈N

(dimk(R/I)i) ti.
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Example 2.31. Suppose R = k[x1, x2] and I = (0). So R/I = R and

dimk(R/I)i = dimk Ri. Since a basis for Ri is given by {xi
1, x

i−1
1 x2, . . . , x1x

i−1
2 , xi

2},

we have dimk Ri = (i + 1). So

HS(R, t) =
∑

i∈N

(i + 1)ti = 1 + 2t + 3t2 + 4t3 + · · ·

But 1/(1− t)2 = 1 + 2t + 3t2 + 4t3 + · · · , so

HS(R, t) = 1/(1− t)2.

When I is a homogenous ideal of R = k[x1, . . . , xn], the Hilbert series HS(R/I, t)

is always a rational function.

Theorem 2.32. [19, Corollary 1.15] Suppose R/I has dimension d. Then there

exists a unique polynomial h(t) = h0 +h1t+ · · ·+hlt
l ∈ Z[t] such that h(1) 6= 0 and

HS(R/I, t) =
h0 + h1t + · · ·+ hlt

l

(1− t)d
.

Definition 2.33. (h-vector) Suppose the Hilbert series of R/I is

HS(R/I, t) =
h0 + h1t + · · ·+ hlt

l

(1− t)d
.

Then the h-vector of R/I is the tuple

h(R/I) = (h0, h1, . . . , hl).

The f -vector (as introduced in Definition 2.33) can be used to compute the

Hilbert series of R/I∆.

Theorem 2.34. [19, Corollary 1.15] Let ∆ be a simplicial complex with f -vector

f(∆) = (f0, f1, . . . , fd−1). Then

HS(R/I∆, t) =

d−1
∑

i=−1

fit
i+1

(1 − t)i+1
.

Example 2.35. Consider the simplicial complex ∆ as in Example 2.4 and given

in Figure 12:
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Figure 12

The f -vector of ∆ is f(∆) = (4, 5, 1). So, the Hilbert series of R/I∆ is given by

HS(R/I∆, t) =
f−1t

0

(1− t)0
+

f0t
1

(1− t)
+

f1t
2

(1− t)2
+

f2t
3

(1− t)3

= 1 +
4t

(1− t)
+

5t2

(1− t)2
+

1t3

(1− t)3

=
(1− t)3 + 4t(1− t)2 + 5t2(1− t) + t3

(1− t)3

=
1 + t + t3

(1 − t)3
.

The h-vector of ∆ is then given by h(∆) = (1, 1, 0, 1).

There is a relationship between the f -vectors and h-vectors:

Lemma 2.36 ([22]).

hj =

j
∑

i=0

(−1)j−1

(

d− i

j − i

)

fi−1 and fj−1 =

j
∑

i=0

(

d− i

j − i

)

hi.

Example 2.37. This example will use a method similar to Pascal’s triangle

to compute the h-vector when given the f -vector. Consider the simplicial complex

∆ = 〈x1x2x3, x1x2x4, x1x3x4, x2x3x4, x2x5, x3x5〉. Since the f -vector is f(∆) =

(5, 8, 4), we can find the h-vector using a ”Pascel triangle like” method:

Figure 13
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In this triangle, the numbers on the left side are all one’s and those on the right

side are the numbers of the f -vector. Every other number in this triangle equals

the subtraction of the two numbers above it.

5. Building a minimal resolution

We will build a minimal free resolution of an ideal I in the ring R = k[x1, . . . , xn]

in this section.

Let R = k[x1, . . . , xn] where k is a field, and let

Rn =





























f1

...

fn











∣

∣

∣

∣

∣

∣

∣

∣

∣

fi ∈ R = k[x1, . . . , xn]



















.

Note that Rn is a free R-module under the operation

g











f1

...

fn











=











gf1

...

gfn











with g ∈ R and











f1

...

fn











∈ Rn.

Definition 2.38. (R-module homomorphism) A function T : Rn → Rm

is an R-module homomorphism if T (x + y) = T (x) + (y) for all x, y ∈ Rn and

T (cx) = cT (x) for all c ∈ R and x ∈ Rn.

Theorem 2.39. If T : Rn → Rm is an R-module homomorphism, then there

exists an m× n matrix with entries in R such that T (x) = Ax. In particular,

A =
[

T (e1) T (e2) · · · T (en)
]

where ei =























0
...

1
...

0























∈ Rn.

Proof. Write x = Inx = [e1 · · · en]x = x1e1 + · · ·+xnen, and use the linearity

of T to compute
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T (x) = T (x1e1 + · · ·+ xnen) = x1T (e1) + · · ·+ xnT (en)

= [T (e1) · · ·T (en)]











x1

...

xn











= Ax.

�

Example 2.40. If R = k[x, y, z] and T : R3 → R3 is the R-module homomor-

phism given by

T





















f1

f2

f3





















=











f1x + f2z

−f1x + f3z

−f2x− f3y











then

T





















f1

f2

f3





















=











x z 0

−x 0 z

0 −x −y





















f1

f2

f3











.

Every R-module has a free resolution, and if R is graded, every graded R-

module has a graded free resolution. To construct such a resolution, begin by

taking a set of minimal generators for an ideal I and map a free module onto I

by mapping the generators of the free module to the given generators of I. For

example, suppose I = (F0,1, . . . , F0,t0) is an ideal of R. We can construct an R-

module homomorphism

ϕ0 : Rt0 → I ⊆ R1

by

ϕ0





















G1

...

Gt0





















= G1F0,1 + · · ·+ Gt0F0,t0 =
[

F0,1 F0,2 · · · F0,t0

]

















G1

G2

...

Gt0

















.
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Definition 2.41. (syzygy) Let M be an R-module and suppose {F1, . . . , Ft} ⊆

M . A syzygy of F1, . . . , Ft is a t-tuple











G1

...

Gt











∈ Rt such that

G1F1 + · · ·+ GtFt = 0.

We make some observations about the map ϕ0:

(1)

kerϕ0 =





























G1

...

Gt0











∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ0





















G1

...

Gt0





















= G1F0,1 + · · ·+ Gt0F0,t0 = 0



















= {all syzygies of F0,1, . . . , F0,t0}

We call kerϕ0 the first syzygy module of I.

(2) kerϕ0 is a finitely generated submodule of Rt0 , i.e., there exists F 1,1, . . . , F 1,t1
,

such that

kerϕ0 = 〈F 1,1, . . . , F 1,t1
〉 = {G1F 1,1 + · · ·+ Gt1F 1,t1

| Gi ∈ R}.

(3) kerϕ0 is like the null space of matrix A, i.e.

Nul(A) = {−→x ∈ Rn | A−→x =
−→
0 }.

We can now define a map ϕ1 : Rt1 → kerϕ0 ⊆ Rt0 by

ϕ1





















G1

...

Gt1





















= G1F 1,t1
+ · · ·+Gt1F 1,t1

=
[

F 1,1 F 1,2 · · · F 1,t1

]











G1

...

Gt1











We make some further observations:

(1) kerϕ1 is called the second syzygy module.

(2) kerϕ1 measures the relations among the generators of kerϕ0.

(3) kerϕ1 is a finitely generated R module, i.e., there exist F 2,1, . . . , F 2,t2
∈

kerϕ1 such that

kerϕ1 = 〈F 2,1, . . . , F 2,t2
〉
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We can repeat the above step to now create a map ϕ2 : Rt2 → kerϕ1 ⊆ Rt1 . In fact,

we continue to reiterate this process. Eventually, this process will stop because of

the following theorem:

Theorem 2.42 (Hilbert Syzygy Theorem). [6, Theorem 19.7] If R = k[x1, . . . , xn],

then there exists an l ≤ n such that kerϕl = 0, i.e., the lth syzygy module is 0.

We now tie the above ideas together to describe the resolution of an ideal.

Associated to any ideal I ⊆ R = k[x1, . . . , xn] is a minimal free resolution of the

form

0 −→ Rtl
ϕl−→ Rtl−1

ϕl−1

−→ · · ·
ϕ2
−→ Rt1 ϕ1

−→ Rt0 ϕ0
−→ I −→ 0

where

• l ≤ n,

• Im ϕi+1 = kerϕi, and

• each ϕi is represented by a ti−1 × ti matrix with entries in R.

Definition 2.43. (ith Betti number) The ith Betti number of I, denoted

βi(I), equals ti, the rank of R appearing in the ith step of the resolution. The

number βi(I) is the number of minimal generators of kerϕi−1.

Remark 2.44. The 0th Betti number β0(I) equals the number of minimal

generators of I.

Example 2.45. Let R = k[x, y, z] and I = (x2, y2, z). Then the minimal

resolution is

0 −→ R

2

6

6

6

6

6

6

4

z

−y2

x2

3

7

7

7

7

7

7

5

−→ R3

2

6

6

6

6

6

6

4

y2 z 0

−x2 0 z

0 −x2 −y2

3

7

7

7

7

7

7

5

−→ R3 [x2 y2 z]
−→ I −→ 0.

So β0(I) = 3, β1(I) = 3 and β2(I) = 1.

6. The graded resolution

Return to the example I = (x2, y2, z) in R = k[x, y, z]. The elements in each

matrix defining a map are in fact homogeneous elements. The degrees of these

elements are also of interest. We can modify the construction so that we can

extract this information.
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Definition 2.46. Let M and N be graded R-modules, i.e.

M =
⊕

i∈Z

Mi and N =
⊕

i∈Z

Ni

An R-module homomorphism ϕ : M −→ N is graded of degree 0 if

ϕ(Ma) ⊆ Na for all a, i.e., degree a elements of M are mapped to elements of

degree a of N .

Definition 2.47. If R = k[x1, . . . , xn], then the graded R-module shifted by

a ∈ N is R(−a) where

R(−a)i = Ri−a,

that is, the degree i part of R(−a) equals the degree i− a part of R.

Example 2.48. 1 ∈ R(−5) has deg 1 = 5, since 1 ∈ R(−5)5 = R5−5 = R0.

Similarly, x2 + y2 ∈ R(−5) has deg x2 + y2 = 7, since x2 + y2 ∈ R(−5)7 = R2.

Definition 2.49. (homogeneous of degree d) Let d1, . . . , dt ∈ N. Then

R(−d1)⊕ . . .⊕R(−dt) = {(G1, . . . , Gt) | Gi ∈ R(−di)}.

We say (G1, . . . , Gt) is homogeneous of degree d in R(−d1)⊕ . . .⊕R(−dt)

if Gi ∈ R(−di)d for each i.

Example 2.50. (x2 + y2, zxy) ∈ R(−5)⊕R(−4) is homogeneous of degree 7.

Let I = (F0,1, . . . , F0,t0) be a homogeneous ideal with degree deg F0,i = d0,i.

Define a map

ϕ0 : R(−d0,1)⊕R(−d0,2)⊕ · · · ⊕R(−d0,t0) −→ (F0,1, . . . , F0,t0) ⊆ R

by

ϕ0((G1, . . . , Gt0)) = G1F0,1 + · · ·+ Gt0F0,t0 .

Then the map ϕ0 has degree 0. To see this, note that if (G1, . . . , Gt0) is homo-

geneous of degree d in R(−d0,1) ⊕ . . . ⊕ R(−d0,t0) then deg Gi = d − d0,i in R.

So

ϕ((G1, . . . , Gt0)) = G1F0,1 + · · ·+ Gt0F0,t0 is homogeneous of degree d.
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One can show that kerϕ0 = 〈F 1,1, . . . , F 1,t1
〉 is generated by homogeneous

elements in R(−d0,1)⊕· · ·⊕R(−d0,t0) of degree d1,1, . . . , d1,t1 , respectively. Repeat

the above idea to get a map

ϕ1 : R(−d1,1)⊕ · · · ⊕R(−d1,t1)→ kerϕ1 ⊆ R(−d0,1)⊕ · · · ⊕R(−d0,t0)

defined by

(G1, . . . , Gt) 7→
[

F 1,1 . . . F 1,t1

]











G1

...

Gt











.

Again, kerϕ1 is generated by homogeneous elements. We continue to reiterate this

process until kerϕl = 0 for some l (which is guaranteed by the Hilbert Syzygy

Theorem. See Theorem 2.42).

So, associated to any homogeneous ideal I ⊆ R = k[x1, . . . , xn] is a minimal

graded free resolution of the form

0 −→ Fl
ϕl−→ Fl−1

ϕl−1

−→ · · · −→ F1
ϕ1
−→ F0

ϕ0
−→ I −→ 0

where

• l ≤ n

• ϕi is a matrix with homogeneous entries in R

• Fi = R(−di,1)⊕ · · · ⊕R(−di,ti
).

Example 2.51. Now we answer the problem mentioned at the beginning of

this section. We give the minimal graded free resolution of Example 2.45. The

minimal graded free resolution of I is

0 −→ R(−5) −→ R2(−3)⊕R(−4) −→ R(−1)⊕R2(−2) −→ I −→ 0.

Definition 2.52. (projective dimension) The minimum length of a free

resolution is called the projective dimension of I over R, written pd(I) for short.

Proof. Special case of [6, Theorem 19.9], when M = R/I. �

Definition 2.53. (i, jth graded Betti number i, j) The i, jth graded Betti

number I, denoted βi,j(I), equals the number of times R(−j) appears in Fi.

Equivalently, βi,j(I) is the number of minimal generators of degree j of kerϕi−1.
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Example 2.54. Given the tree Γ in Figure 14, we consider the path ideal

I4(Γ) = (x1x2x4x8, x1x2x4x9, x2x4x9x12, x1x3x6x10, x1x3x6x11) ⊆ R = k[x1, . . . , x12].

The minimal free resolution of I4(Γ):

0 −→ R(−9) −→ R4(−8) −→ R3(−5)⊕R4(−7) −→ R5(−4) −→ I4(Γ) −→ 0.

So the Betti numbers are β0,4(I) = 5, β1,5(I) = 3, β1,7(I) = 4, β2,8(I) = 4, β3,9(I) =

1 and βi,j(I) = 0 otherwise, where I = I4(Γ).

Figure 14

Definition 2.55. (linear resolution) We say that I has a linear resolution

if there exists an integer m ≥ 1 such that βi,i+j(I) = 0 for all i and j with j 6= m.

Example 2.56. Let G be a cycle Cn. When n = 4, the edge ideal is I(C4) =

(x1x2, x2x3, x3x4, x4x1). The resolution of I(C4),

0 −→ R(−4) −→ R4(−3) −→ R4(−2) −→ I(C4) −→ 0,

is a linear resolution. When n = 6, the edge ideal is I(C6) = (x1x2, x2x3, x3x4, x4x5, x5x6, x6x1).

The resolution of I(C6),

0 −→ R2(−6) −→ R6(−5) −→ R6(−3)⊕R3(−4) −→ R6(−2),

is not a linear resolution. (Please check the details about when the edge ideal I(Cn)

has a linear resolution for some n using the theorem of Fröberg in [13]).
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Thus, in particular, if I has a linear resolution, then I is generated by homo-

geneous polynomials of the same degree. But the converse is not true. In example

2.54 the path ideal is generated by square-free monomials of the same degree, but

the resolution is not linear.



CHAPTER 3

Cohen-Macaulay and Sequentially

Cohen-Macaulay Rings and Modules

In the next chapter, we will prove that the ideal generated by all paths of length

t in the tree Γ is sequentially Cohen-Macaulay . The following is to introduce

sequentially Cohen-Macaulay modules and their properties. Before that, we

present some required ingredients.

1. Shellable simplicial complexes

We begin by introducing a class of simplicial complexes which are called shellable.

Recall that a simplicial complex ∆ of dimension (d − 1) is pure if all the facets of

∆ have dimension (d− 1) i.e., |F | = d for all facets.

Definition 3.1. A pure simplicial complex ∆ is shellable if the facets of ∆

can be listed F1, F2, . . . , Fn such that for all 1 ≤ j < i ≤ n there exists some

v ∈ Fi \ Fj and some k ∈ {1, . . . , i− 1} with Fi \ Fk = {v}.

Example 3.2. The simplicial complex ∆ = 〈F1, F2, F3〉, where F1 = {x1, x2, x3},

F2 = {x2, x3, x4} and F3 = {x3, x4, x5}

Figure 1

35
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is shellable since

x4 ∈ F2 \ F1 and {x4} = F2 \ F1

x5 ∈ F3 \ F1 and {x5} = F3 \ F2

x5 ∈ F3 \ F2 and {x5} = F3 \ F2.

The simplicial complex ∆ = 〈F1, F2〉, where F1 = {x1, x2, x4}, F2 = {x3, x4, x5}

Figure 2

is not shellable since

x1 ∈ F \G, but {x1} 6= F \G (or G \ F )

x2 ∈ F \G, but {x2} 6= F \G (or G \ F )

x5 ∈ G \ F, but {x5} 6= G \ F (or F \G).

An equivalent definition for a shellable complex is given below.

Theorem 3.3. A pure simplicial complex ∆ is shellable if and only if the facets

of ∆ can be given a linear order F1, · · · , Fn such that 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉 is gen-

erated by a nonempty set of maximal proper faces Fi for i = 1, . . . , n.

Example 3.4. Consider the simplicial complex in Figure 1. Then we have

〈F2〉 ∩ 〈F1〉 = 〈{x2, x3}〉 ←− a maximal proper face of F2

〈F3〉 ∩ 〈F1, F2〉 = 〈{x3}, {x3, x4}〉 = 〈{x3, x4}〉 ←− a maximal proper face of F3

So ∆ is a shellable simplicial complex. Consider the simplicial complex of Figure 2.

For this example, we have 〈F 〉 ∩ 〈G〉 = 〈{x3}〉 which is not a maximal proper face

of F or G. So this complex is not shellable. Note that the maximal proper faces of

F are {x1, x2}, {x2, x3}, {x3, x1}.
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Recall that if ∆ is a simplicial complex, then the Stanley-Reisner ideal is

I∆ = ({xi1 · · ·xir
| {xi1 , . . . , xir

} /∈ ∆}).

The quotient ring R/I∆ is the Stanley-Reisner ring. The Stanley-Reisner ring of a

shellable simplicial complex is a special type of ring; it is an example of a Cohen-

Macaulay ring which is defined below.

2. Cohen-Macaulay rings

To define a Cohen-Macaulay (CM) ring, we need the notions of (Krull) dimen-

sion, regular sequences and depth.

Definition 3.5. (prime ideal, length of a chain) A prime ideal of a ring

S is an ideal P ( S such that whenever ab ∈ P then either a ∈ P or b ∈ P . A

chain of prime ideals is a strictly increasing sequence of prime ideals, i.e.

P0 ( P1 ( · · · ( Pn ⊆ S.

We say n is the length of the chain.

Definition 3.6. The (Krull) dimension of a ring , denoted dimR, is the

length of the longest chain of prime ideals in R, i.e.

dimR = sup{d | P0 ( P1 ( · · · ( Pd ( R, with Pi prime}.

Example 3.7. In R = k[x1, . . . , xn] any ideal generated by a subset of {x1, . . . , xn},

e.g. I = (xi1 , . . . , xir
), is a prime ideal. So dim k[x1, . . . , xn] ≥ n, since

(0) ( (x1) ( (x1, x2) ( · · · ( (x1, x2, . . . , xn)

is a chain of length n of prime ideals.

Remark 3.8. dim k[x1, . . . , xn] = n, but this is nontrivial to show. See [6,

Theorem 13.1].

Theorem 3.9. [18, Theorem 22] If ∆ is a simplicial complex, then

dimR/I∆ = dim ∆ + 1

where by dimR/I∆ we mean the dimension of the ring, and by dim ∆ we mean the

dimension of the simplicial complex.
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This theorem is useful to compute the dimension of the quotient ring R/I∆,

when the square-free monomial I∆ is a Stanley-Reisner ideal associated to a sim-

plicial complex.

Example 3.10. Let I = (x1x3, x1x4, x2x3, x2x4) = (x1, x2) ∩ (x3, x4) in R =

k[x1, x2, x3, x4]. We will compute the dimension of R/I.

First, recall that P is a prime ideal in R/I if and only if there exists a prime

ideal I ⊆ P ( R such that P = P/I. Also, note that if P is any prime ideal with

I ⊆ P , then either

(1) x1, x2 ∈ P or

(2) x3, x4 ∈ P .

Set P0 = (x1, x2)/I, P1 = (x1, x2, x3)/I, and P2 = (x1, x2, x3, x4)/I. Then

P0 ( P1 ( P2 is a chain of prime ideals in R/I, so it follows that dimR/I ≥ 2.

Suppose there is a chainQ0 ( Q1 ( · · · ( Qn ( R/I with n ≥ 3. So Qi = Qi/I

for some prime ideal I ( Qi ( R. Thus, we have a chain

Q0 ( Q1 ( · · · ( Qn ( R.

Suppose we are in case (1), i.e., x1, x2 ∈ Q0. Then

(0) ( (x1) ( Q0 ( · · · ( Qn.

is a chain of length n+2 ≥ 3+2 = 5 in R. This contradicts the fact that dimR = 4.

A similar argument for case (2) will give us a similar conclusion. Thus dimR/I ≤ 2.

Hence, dim R/I = 2.

Definition 3.11. (zero divisor) [4] A zero divisor of a ring R is an element

a ∈ R such that a 6= 0 and there exists 0 6= b ∈ R such that ab = 0.

Definition 3.12. (regular) Let I ⊂ R = k[x1, · · · , xn]. An element F ∈ R is

a regular element on R/I if F̄ = (F +I) is not a zero divisor of R/I. Equivalently,

F is regular on R/I if whenever FG ∈ I, then G ∈ I.

Example 3.13. Consider any xi ∈ R = k[x1, . . . , xn]. Then xi is regular on

R = R/(0) since R is a domain.

Example 3.14. Suppose I = (xyz) ⊆ R = k[x, y, z]. Then xy is not regular

on R/I since xy 6= 0 ∈ R/I and z 6= 0 ∈ R/I but xy(z) = xyz = 0 in R/I.
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Example 3.15. Let I = (x1, x2) ∩ (x3, x4) ⊂ k[x1, x2, x3, x4] = R. We show

that (x1 + x3) is regular on R/I.

Suppose (x1 + x3)G ∈ J = (x1, x2) ∩ (x3, x4). So (x1 + x3)G ∈ (x1, x2) and

(x1 +x3)G ∈ (x3, x4). Both (x1, x2) and (x3, x4) are prime ideals. Also (x1 +x3) /∈

(x1, x2) and (x3, x4). So G ∈ (x1, x2) ∩ (x3, x4) = I.

Definition 3.16. (regular sequence) A sequence F1, . . . , Fm of R is called a

regular sequence on R/I if

(1) F1 is regular on R/I, and

(2) Fi is regular on R/(I, F1, · · · , Fi−1), for i = 2, . . . , m.

Example 3.17. If R = k[x1, . . . , xn] and I = (0), then x1, . . . , xn is a regular

sequence on R/I since

(1) x1 is regular on R/(0).

(2) xi is regular on R/(x1, . . . , xi−1) ∼= k[xi, . . . , xn].

Theorem 3.18. [6, Corollary 17.2] All maximal regular sequence have the same

length, and any regular sequence can be extended to a maximal regular sequence.

Definition 3.19. (depth) The depth of R/I, denoted depth(R/I), is the

length of the longest maximal regular sequence on R contained in m = (x1, x2, . . . , xn).

Theorem 3.20. (Auslander-Buchsbaum Formula) [6, Theorem 19.9]. Let R =

k[x1, . . . , xn], and I ⊆ R a homogeneous ideal. Then

pd(R/I) + depth(R/I) = n.

Theorem 3.21. [6, Theorem 19.1] For any ideal I ⊆ k[x1, . . . , xn] = R,

depth(R/I) ≤ dim(R/I).

Definition 3.22. (Cohen-Macaulay ring) A ring R/I is Cohen-Macaulay

if depth(R/I) = dim(R/I).

Example 3.23. The ring R = k[x1, . . . , xn] is Cohen-Macaulay since depth(R/I) =

dim(R/I) = n.

Example 3.24. If I = (x1, x2) ∩ (x3, x4) ⊆ R = k[x1, . . . , x4], then R/I is not

Cohen-Macaulay. We saw that dim R/I = 2 and x1 + x3 is regular on R/I. So

1 ≤depth(R/I). We want to show that depth(R/I) = 1.
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Take any G ∈ m = (x1, x2, x3, x4). We need to show G cannot be regular on

R/(I, x1 + x3). We can write G as

G = G1(x1, x2, x3, x4)x1 + G2(x2, x3, x4)x2 + G3(x3, x4)x3 + G4(x4)x4.

Suppose G 6= 0 in R/(I, x1 + x3). This implies that G /∈ (I, x1 + x3). Note that

x1 6= 0 ∈ R/(I, x1 + x3). But Gx1 = G1x
2
1 + G2x1x2 + G3x3x1 + G4x4x1.

Now

x2
1 = x1(x1 + x3)− x1x3 ∈ (x1x3, x1x4, x2x3, x2x4, x1 + x3)

x1x2 = x2(x1 + x3)− x2x3 ∈ (x1x3, x1x4, x2x3, x2x4, x1 + x3)

x3x1 ∈ (x1x3, x1x4, x2x3, x2x4, x2 + x3)

x4x1 ∈ (x1x3, x1x4, x2x3, x2x4, x1 + x3).

So Gx1 ∈ (I, x1 + x3) but G /∈ (I, x1 + x3). Thus G is not regular. Therefore we

cannot extend the length of the regular sequence. So depth(R/I) = 1.

We now relate Cohen-Macaulay with the notion of shellable introduced at the

beginning of this chapter.

Theorem 3.25. [19, Theorem 13.45] Suppose that ∆ is a shellable simplicial

complex. If R/I∆ is the associated Stanley-Reisner ring, then R/I∆ is Cohen-

Macaulay.

Example 3.26. Let ∆ be the simplicial complex in Figure 3.

Figure 3

Then I∆ = (x1x3, x1x4, x2x3, x3x4) = (x1, x2) ∩ (x3, x4). This simplicial com-

plex ∆ is not shellable since R/I∆ is not Cohen-Macaulay as shown in Example

3.24.

Definition 3.27. (Cohen-Macaulay simplicial complex ) We call ∆ a

Cohen-Macaulay simplicial complex if R/I∆ is Cohen Macaulay.
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The following theorem describes the relationship between a Cohen-Macaulay ring

and its Alexander dual when I is square-free.

Theorem 3.28. R/I∆ is Cohen-Macaulay if and only if I∨∆ has a linear reso-

lution.

Recall the definition of the linear resolution of Definition 2.55. Let I be a

homogeneous ideal of R, and suppose that all the minimal generators of I have

the same degree, say d. We say that I has a linear resolution if for all i ≥ 1,

βi,j(R/I) = 0 if j 6= i + d− 1. Let us see an example of Theorem 3.28.

Example 3.29. Let G be a pentagon. The edge ideal is

I(G) = (x1x2, x2x3, x3x4, x4x5, x5x1).

Using CoCoA to compute the depth of R/I(G) and the Krull dimension of R/I(G),

we get depth(R/I(G)) = dim(R/I(G)) = 2. Hence G is Cohen-Macaulay. The

Alexander dual of I(G) is

I(G)∨ = (x1, x2) ∩ (x2, x3) ∩ (x3, x4) ∩ (x4, x5) ∩ (x5, x1)

= (x2x3x5, x1x3x5, x1x2x4, x1x3x4, x2x4x5).

And the resolution of I(G)∨ is

0 −→ R(−5) −→ R5(−4) −→ R5(−3) −→ R −→ I(G)∨ −→ 0.

This shows the Alexander dual of I(G) has a linear resolution.

3. Sequentially Cohen-Macaulay modules and componentwise linearity

Definition 3.30. (Sequentially Cohen-Macaulay) Let M be a graded

module over R = k[x1, . . . , xn]. We call M sequentially Cohen-Macaulay

(SCM) if there is a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ms = M

of M by graded R-modules such that Mi/Mi−1 is Cohen-Macaulay for all i, and

dimMi/Mi−1 < dim Mi+1/Mi for all i, where dim denotes the Krull dimension.

Definition 3.31. If I is an homogenous ideal, let (Id) denote the ideal gen-

erated by all the degree d elements of I.
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Example 3.32. I = (x1, x
3
2) ⊆ k[x1, x2]. Then

(I1) = (x1)

(I2) = (x2
2, x1x2)

(I3) = (x3
1, x

2
1x2, x1x

2
2, x

3
2) ⊆ (x1, x2)

(I4) = (x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2) ⊆ (x1, x2)

Definition 3.33. (componentwise linear)[17] An ideal I is componentwise

linear if (Id) has a linear resolution for all positive integer d ∈ N.

Theorem 3.34. [17, Theorem 2.1] Let I be a square-free monomial ideal of

R. Then R/I is sequentially Cohen-Macaulay if and only if I∨ is componentwise

linear.

Example 3.35. Use the ideal in Example 3.32. We find the resolution for all

(Id), where I ⊆ R = k[x1, x2].

• Res((I1)) : 0→ R(−1)→ (I1)→ 0

• Res((I2)) : 0→ R(−3)→ R2(−2)→ (I2)→ 0

• Res((I3)) : 0→ R3(−4)→ R4(−3)→ (I3)→ 0

When d ≥ 3, we have (Id) = (x1, x2)d. This is because when d ≥ 3 every generator

of (Id) has the form xi
1x

d−i
2 , which is in the ideal (x1, x2)d, i.e. (Id) ⊆ (x1, x2)d.

The converse is that (x1, x2)d = ({xi
1x

d−i
2 | i = 0, 1, . . . d}). So when d ≥ 3, we

have (x1, x2)d ⊆ (Id). Then since we know k[x1, x2]/(x1, x2) is Cohen-Macaulay, it

is also sequentially Cohen-Macaulay (SCM). Hence by Theorem 3.34 we have that

(x1, x2)d = (Id) has a linear resolution for all d ≥ 3.

The theorem below will give an important result about simplicial tree which

will be used in this paper.

Theorem 3.36. (Simplicial trees are SCM) [11, Corollary 5.6]. The facet

ideal of a simplicial tree is sequentially Cohen-Macaulay.

The primary idea in Faridi’s proof is to prove that if I(∆) is the facet ideal of

a simplicial tree ∆, then the Alexander dual I(∆)∨ is componentwise linear. Then,

by Theorem 3.34, R/I(∆) is SCM. This approach was also used by Francisco and

Van Tuyl to prove that R/I(G) is SCM when G is chordal.
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The Simplicial Complex associated to It(Γ) is a

simplicial tree

In this chapter, we will study the properties of the path ideal of a tree. In

particular, we will show that R/It(Γ) is sequentially Cohen-Macaulay.

1. The path ideal of a tree is sequentially Cohen-Macaulay

Recall that in a rooted tree the length of a path is the number of edges in the

path, and is denoted by length(F), where F is a path of a rooted tree.

Definition 4.1. (height) The height of a rooted tree Γ, denoted height(Γ),

is the length of the longest path starting at the root of the tree.

Example 4.2. For the tree in Figure 1, v1v2v4v8 is a path of length 3, and the

edge v3v7 is a path of length 1. The height of this tree is 3 since the length of the

longest path is 3.

Figure 1

Definition 4.3. (path ideals of a directed tree) The ideal generated by all

paths of length t − 1 in a rooted directed tree Γ, denoted It(Γ), is the monomial

43
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ideal:

It(Γ) = ({xi1 · · ·xit
| xi1 · · ·xit

is a path of length t− 1 in Γ}).

It follows that if Γ is a tree with height(Γ) < t− 1, then It(Γ) = (0).

We can associate to Γ a simplicial complex. Define the simplicial complex

∆t(Γ) = 〈{xi1 , . . . , xit
} | xi1 · · ·xit

is a path of length t− 1 in Γ〉.

The simplicial complex ∆t(Γ) and ideal It(Γ) are related as follows.

Lemma 4.4. Let Γ be a rooted tree, t ≥ 2 and consider the simplicial complex

∆t(Γ) = 〈{xi1 , . . . , xit
} | xi1 · · ·xit

is a path of length t− 1 in Γ〉.

Then I(∆t(Γ)) = It(Γ), i.e., It(Γ) is the facet ideal of ∆t(Γ).

Proof. The simplicial complex ∆t(Γ) is pure (Definition 1.19) and every facet

has dimension t−1. Take a facet {xi1 , . . . , xit
} ∈ ∆t(Γ). By the definition of ∆t(Γ),

we know xi1 · · ·xit
is a path of length t − 1. So xi1 · · ·xit

∈ It(Γ). This implies

I(∆t(Γ)) ⊆ It(Γ). Take a generator xi1 · · ·xit
of It(Γ) and we have {xi1 , . . . , xit

}

is a facet in ∆t(Γ). So {xi1 , . . . , xit
} ∈ I(∆t(Γ)). Then I(∆t(Γ)) ⊇ It(Γ). �

In the following lemma we prove the intersection of any two paths must start

at the first vertex of one of these two paths.

Lemma 4.5. The intersection of any two distinct paths F and G in a directed

rooted tree Γ is a path of length |F ∩ G| − 1 starting at the first vertex of either F

or G.

Proof. First we want to show that the intersection of any two paths must

start at the first vertex of one of these two paths. Assume F ∩ G starts at vm

which is neither the first vertex of F nor G. So, there is a vertex u ∈ F and w ∈ G

such that uvm is a directed edge in the path F and wvm is a directed edge in G.

We know all the paths start at the root v0. Then there are two paths between v0

and vm through F and G respectively. This contradicts the definition of a tree. So

F ∩G start at the first vertex of F or G.
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Second, we will show F ∩ G is a connected path of length |F ∩ G| − 1. Let F

be a path in a tree Γ, and suppose F = vi1 · · · vit
. Suppose F ∩ G = vim1

· · · vims

for some path G. We claim that F ∩ G is a connected path in Γ. Suppose F ∩

G = vim1
· · · vimj

∪ vimk
· · · vims

are two disjoint paths in Γ. Thus there is a path

G = vim1
· · · vimj

vgj+1
· · · vgk−1

vimk
· · · vims

in Γ, where G 6= F . But then there are

two different paths vmj+1
· · · vmk−1

⊂ F and vgj+1
· · · vgk−1

⊂ G between vimj
and

vimk
. This contradicts the definition of a tree because for any two vertices there is

only one path connecting the two vertices. Thus the intersection of F and G is a

path with |F ∩G| − 1 edges, i.e. length(F ∩G) = |F ∩G| − 1. �

Definition 4.6. (level) The level of a vertex v in a rooted tree Γ, denoted

level(v), is the length of the path starting at the root and ending at v.

From Lemma 4.5 above we get the following corollary.

Corollary 4.7. The intersection of any two paths is a path starting at the

lower starting vertex of the two paths. Equivalently we say it starts at the starting

vertex with larger level.

Lemma 4.8. Let F be a path of length t−1 in Γ that contains a leaf of Γ. Then

F corresponds to a leaf in the simplicial complex ∆t(Γ).

Proof. Let F = vi1 · · · vit
be a path of length t− 1 in Γ and suppose vit

is a

leaf. For any facet Gj ∈ ∆t(Γ), Gj is a path of length t − 1. Since vit
is free, we

have Gj ∩F ⊆ vi1 · · · vit−1
, for any j. If there is a vertex vi0 with smaller level than

that of vi1 and connects with vi1 , we choose the facet G = vi0 · · · vit−1
and we have

Gj ∩ F ⊆ G ∩ F = vi1 · · · vit−1
. This implies F is a leaf in ∆t(Γ).

If there is no vertex with smaller level and connects with vi1 , then the vertex

vi1 is the root of the tree Γ. Set
⋃

Gj 6=F,Gjpath(Gj ∩ F ) = vi1 · · · vim
, m < t.

There must be a path Gj of length t − 1 through vim
. The path looks like Gj =

vij
· · · vim

vrm+1
· · · vrk

, 1 ≤ j ≤ m < t ≤ k and k = t + j − 1 since Gj is of length

t − 1. Since Gj ∩ F ⊆ vi1 · · · vim
, length(Gj ∩ F ) ≤ m − 1. So the length of

the remaining part vrm+1
· · · vrk

of the path Gj , which is not in the union of the

intersections of F with any other facets, is bigger than t−m. Now we get a path

N = vi1 · · · vim
vrm+1

· · · vrk
of length greater than t. We pick a subsequence of N to
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get a path G = vi1 · · · vim
vrm+1

· · · vrt
in Γ such that Gj ∩ F ⊆ G ∩ F = vi1 · · · vim

.

Thus F is a leaf of ∆t(Γ). �

Theorem 4.9. Let Γ be a rooted tree and t ≥ 2 a positive integer. Then ∆t(Γ)

is a simplicial tree.

Proof. There are 3 cases to consider:

Case 1: If height(Γ) < t− 1, then It(Γ) = (0). This is the trivial case.

Case 2: If height(Γ) = t− 1, then all the generators of It(Γ) have a leaf in Γ and

start at the root of Γ. Then by Lemma 4.8, all the paths correspond to leaves

of the simplicial complex ∆. Thus ∆ is a simplicial tree in this case because all

subcomplexes will have a leaf.

Case 3: If height(Γ) > t − 1, we want to show that the simplicial complex ∆t(Γ)

is a simplicial tree, i.e. every subcomplex of ∆t(Γ) contains a leaf. By Definition

1.30 we need to show that given any subset 〈G1, . . . , Gl〉 of the facet set of ∆t(Γ),

the corresponding subcomplex has a leaf (this is the definition of a simplicial tree).

We do induction on n = height(Γ).

The base case is true since if heigth(Γ) = n ≤ t− 1, we have already seen that

∆t(Γ) is a simplicial tree. Assume the statement is true when n = k. That is to say

that for all trees Γ with height(Γ) ≤ n, the simplicial complex ∆t(Γ) is a simplicial

tree, i.e., every subcomplex of ∆t(Γ) has a leaf. So assume Γ is a tree of height

n + 1.

If 〈G1, . . . , Gl〉 ⊆ ∆t(Γ) is a subset that contains a facet Gi that contains a leaf

of Γ, then Gi is a leaf by Lemma 4.8.

On the other hand, suppose every Gi does not contain a leaf of Γ. Then Gi is

still an element of ∆t(Γ
′) where Γ′ = Γ \ {vi1 , . . . , vim

}. The vertices vi1 , . . . , vim

are all the leaves of Γ. Now Γ′ is a tree of height n. By the induction hypothesis, we

have ∆t(Γ
′) is a simplicial tree, i.e. there exists a facet in 〈G1, . . . , Gl〉 that must be

a leaf since height(Γ′) = n. This shows there exists an facet in 〈G1, . . . , Gl〉 that is

a leaf. So the simplicial complex ∆t(Γ) is a simplicial tree since every subcomplex

〈G1, . . . , Gl〉 has a leaf. �
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The above theorem shows that when we view the path ideal It(Γ) of the tree

Γ as the facet ideal of a simplicial complex, this simplicial complex is a simplicial

tree. We will apply a result of Faridi’s paper [11, Corollary 5.6] to prove:

Corollary 4.10. If It(Γ) is a path ideal of a tree Γ, then R/It(Γ) is sequen-

tially Cohen-Macaulay for all t ≥ 2.

Proof. By Lemma 4.4, we know that the facet ideal of the simplicial complex

∆t(Γ) = 〈{xi1 , . . . , xit
} | xi1 · · ·xit

is a path of length t− 1 in Γ〉

is It(Γ). Theorem 4.9 shows this simplicial complex ∆t(Γ) is a simplicial tree.

Applying the property that the facet ideal of a simplicial tree is sequentially Cohen-

Macaulay (see Theorem 3.36), we get R/It(Γ) is sequentially Cohen-Macaulay. �

2. Properties of a path ideal

In this section, we investigate the graph of a line. Further properties on this

line can be found in the Ph.D. thesis of Jacques [16].

Definition 4.11. A line graph Ln is the graph on the vertex set V =

{x1, . . . , xn} with edge set ELn
= {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}. When the

vertex x1 is assigned the root, and all the edges have the direction away from the

root, the line Ln is a directed line.

Example 4.12. The line graph looks like:

1
X

2
X                     

n
X

Figure 2

Theorem 4.13. Consider the line graph Ln. Then the path ideal In(Ln) =

(x1, . . . , xn) of the line Ln is CM, i.e., R/In(Ln) is Cohen-Macaulay.
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Proof. Since the resolution of R/In(Ln) is

0 −→ R(−n) −→ R −→ R/In(Ln) −→ 0,

we know the projective dimension of R/In(Ln) is always 1. Then the depth of

R/In(Ln) is n− 1 by the Auslander-Buchsbaum formula 3.20 (Theorem 19.9 [22]).

On the other hand, if we let In(Ln) be a Stanley-Reisner ideal of a simplicial

complex ∆ = 〈F1, . . . , Ft〉, each facet Fi has dimension n − 2. This is because ∆

is on V and x1 · · ·xn is the largest and the only nonface in ∆. All the other faces

of smaller dimension are in ∆. So all the facets contain n − 1 vertices. That is,

dimFi = |Fi| − 1 = n − 1 − 1 = n − 2. Thus dim∆ = n − 2. By Theorem 3.9,

dim(R/In(Ln)) = n − 1. We thus get dim(R/In(Ln)) = depth(R/In(Ln)). So

R/In(Ln) is Cohen-Macaulay. �

Below are some values of the projective dimensions (see the definition of pro-

jective dimension in Definition 2.52) of path ideals for lines. For each Ln, the

projective dimension was computed using CoCoA. A table of our results is given

below.

n 2 3 4 5 6 7 8 9 10

pd(I2(Ln)) 1 2 2 3 4 4 5 6 6

pd(I3(Ln)) 0 1 2 2 2 3 4 4 4

pd(I4(Ln)) 0 0 1 2 2 2 2 3 4

pd(I5(Ln)) 0 0 0 1 2 2 2 2 2

pd(I6(Ln)) 0 0 0 0 1 2 2 2 2

pd(I7(Ln)) 0 0 0 0 0 1 2 2 2

pd(I8(Ln)) 0 0 0 0 0 0 1 2 2

pd(I9(Ln)) 0 0 0 0 0 0 0 1 2

pd(I10(Ln)) 0 0 0 0 0 0 0 0 1

In this table every column shows all the projective dimensions of the path ideals

It(Ln) of a line Ln for all t ≥ 2. When t > n, there is no generator of It(Ln)

because t is greater than the number of vertices of the vertex set V . So, we get

It(Ln) = (0). Therefore pd(It(Ln)) = 0, for t > n. All the entries are 0’s in the

bottom left corner.

Jacques gave a formula for the first row of this table, i.e., for the edge ideal

I2(Ln). He gives the formulas of projective dimensions for all n ≥ 2.
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Theorem 4.14. [16] The projective dimension of the line graph is independent

of the characteristic of the chosen field and is

pd(I(Ln)) =



















2n
3 , ifn ≡ 0 mod 3

2n−2
3 , ifn ≡ 1 mod 3

2n−1
3 , ifn ≡ 2 mod 3.

In Theorem 4.13 it was shown that when t = n the path ideal It(Ln) is Cohen-

Macaulay. Also, it was shown that pd(It(Ln)) = 1. So all entries in the diagonal of

this table are equal to 1. The following theorem will show that in the 2nd diagonal

all the elements are 2’s.

Theorem 4.15. For a line Ln on V = {x1, . . . , xn}, the projective dimension

of the path ideal In−1(Ln) is 2.

Proof. The path ideal In−1(Ln) has form In−1(Ln) = (x1F, xnF ), where

F = x2x3 · · ·xn−1. Consider the map φ0 : R2 −→ R given by

φ0









G1

G2







 = G1x1F + G2xnF.

The kernel of φ0 is

kerφ0 =











G1

G2



 |G1x1F + G2xnF = 0







=











G1

G2



 |F (G1x1 + G2xn) = 0







.

Since F = x2x3 · · ·xn−1 is not a zero divisor, we have G1x1 + G2xn = 0. From this

it follows G1x1 = −G2xn, i.e. x1|G2 and xn|G1. So

kerφ0 =







F





−xn

x1



 |F ∈ R







.

The resolution of In−1(Ln) is

0 −→ R
φ1
−→ R2 φ0

−→ In−1(Ln) −→ 0

where

φ1 : R −→ R2

G 7→ G





−xn

x1



 =





−Gxn

Gx1



 .
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To see this, we need to prove that Imφ1 = kerφ0. For any G ∈ R, we have




−Gxn

Gx1



 ∈ Imφ1,

and

φ0(φ1(G)) = φ0









−Gxn

Gx1







 = −Gx1xnF + Gx1xnF = 0.

So Imφ1 ⊆ kerφ0. If





A

B



 ∈ kerφ0, then

φ0









A

B







 = Ax1F + BxnF = 0.

This follows Ax1F = −BxnF . This shows xn|A and xn|B. Let A be Mxn and B

be Nx1 and plug in Ax1F + BxnF = Mx1xnF + Nx1xnF = 0. We get M = −N .

So




A

B



 =





−Nxn

Nx1



 ∈ Imφ1

I.e. we showed Imφ1 ⊇ kerφ0. Hence, Imφ1 = kerφ0. So the projective dimension

of In−1(Ln) = 2. �
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Open questions

I gave the main results about the properties of the path ideal in a directed

rooted tree in Chapter 4. There are many interesting questions that one can still

ask about path ideals and their properties. The list below shows some of the open

questions about the properties of the path ideal.

(1) Find formulas for the projective dimension of the path ideal of lines.

(2) Study the ring R/It(G) when G is a cycle graph or bipartite graph.

(3) Give the minimal graded free resolution of path ideals.

For the first open question, Sean Jacques, in [Corollary 7.7.35, [16]], gave formulas

for the projective dimensions of the edge ideals of the line graph Ln , i.e., It(Γ)

where t = 2. (See Theorem 4.14). I would like to find formulas for pd(It(Ln)) for

t > 2.

Currently it’s hard to find formulas for the projective dimension for every path

ideal in a tree. More data is still required. For my first step, I will use CoCoA to

compute more projective dimensions and give a bigger table. I then hope to prove

the numbers in the 3rd diagonal are all 2’s.

Recently some mathematicians have been interested in classifying or identifying

sequentially Cohen-Macaulay graphs in terms of the combinatorial properties of the

graph. In [23] Van Tuyl and Villarreal investigate what families of graphs have the

properties that the graph is shellable. They also classify all the shellable bipartite

graphs.

Theorem 5.1. [23] Let G be a bipartite graph. Then G is sequentially Cohen-

Macaulay if and only if G is shellable.

One can also ask the question “Are the simplicial complexes ∆t(Γ) defined by

a path ideal It(Γ) of a tree Γ shellable?” Since Γ is a bipartite graph, answering

51
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this question would partially generalize the above Theorem 5.1.

In [1] Brumatti and da Silva determine for what lengths t− 1 of the paths in a

cycle G = Cn the path ideal It(G) is of linear type. I am interested in determining

when It(G) with t ≥ 3 is SCM or CM when G = Cn, a cycle of length n. (Reference

for t = 2 is [7, Proposition 4.1]). Francisco and Van Tuyl gave

I2(Cn) is







CM, iff n = 3, 5;

SCM, iff n = 3, 5.
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