
Open Shop Scheduling to Minimize
Makespan

Kevin Jurcik
Department of Mathematical Sciences

Lakehead University
Thunder Bay, Ontario

1

Abstract
We study various classical Open Shop scheduling problems to minimize the makespan.
For problems which are polynomially solveable, we present a polynomial time algorithm
to solve the problem. For those problems which are NP-hard, we give a proof of NP-
hardness. We also present two modern Open Shop scheduling problems, Controllable
Open Shop and Flexible Open Shop. For each of these problems, we present an algorithm
to solve the problem.

2

Contents

1 Introduction 4

1.1 Table of Results . 4

2 Classical Problems 5

2.1 O2||Cmax . 5

2.2 Om||Cmax, for m > 2 . 6

2.3 O2|rj|Cmax . 7

2.4 Om|prmp|Cmax . 8

2.5 Om|rj, prmp|Cmax . 8

3 Open Shop Scheduling with Controllable Processing Times 9

3.1 O2|contr, Cmax ≤ C|K . 9

3.2 O2|contr|(Cmax, K) . 11

4 Flexible Open Shop Scheduling 12

4.1 Introduction . 12

4.2 Solving Pm|prmp|Cmax . 13

4.3 Solving FO2|prmp|Cmax . 14

4.4 Example . 17

4.5 Optimal Number of Stage 2 Machines . 18

4.6 Example . 20

5 Conclusion 20

6 References 21

3

1 Introduction

In this paper we study various classical Open Shop scheduling problems to minimize the
makespan, as well as two modern Open Shop problems. In an open shop, we are presented
with m machines and n jobs. Each job is composed of m tasks. The ith task of the jth
job requires pij units of processing to be completed on the ith machine. When m = 2, we
let aj be the processing time of the first task of Job j and let bj be the processing time of
the second task of Job j. No two tasks of the same job may be processed concurrently,
nor may any single machine process two jobs simultaneously. The makespan Cmax of
a schedule is the time at which no more processing is required among all the jobs or,
equivalently, the time at which the latest machine finishes processing.

Any particular scheduling problem can be denoted in the form α|β|γ, where α specifies
the machine environment, β specifies the processing characteristics and constraints, and
γ specifies the optimization criteria. For the classical problems discussed in this paper,
the fields will take on very few values. We have that α will be either O2, O3, or Om
corresponding to 2, 3 or an arbitrary number m of machines. We have that β will be
any combination of the constraints rj and prmp. The constraint rj specifies that not
every job is available for processing at time 0, but rather Job j will become available at
some time rj. Consequently, no task of Job j can be processed until after time rj. The
constraint prmp specifies that the processing of a task may be preempted at any time to
be continued at a later time. If prmp is not present, then each task must be processed
continuously until completion once it has begun processing on some machine. Finally, we
have that γ will take on only the function Cmax as defined above. That is, the objective
goal of each of the classical problems studied in this paper is to find a schedule with
minimal makespan.

Of great interest during the study of scheduling problems is the complexity of the problem.
We say that a problem is polynomially solvable if there exists an algorithm to find an
optimal schedule which runs in an amount of time which is polynomial in the size of the
input n, the number of jobs. Otherwise, if we are able to prove that finding an optimal
schedule for a problem is at least as difficult as finding a solution for a different suitably
difficult problem (that is, a problem which is NP-complete), we say that the problem is
NP-hard.

For those problems which are polynomially solvable, we present a polynomial time algo-
rithm to solve the problem. For those problems which are NP-hard, we present a proof
of NP-hardness.

1.1 Table of Results

Here we present a table where each row contains a problem, a simple summary of the
complexity of the problem, and a reference to the section of this paper where the problem
is studied in detail.

4

Problem Results Reference
O2||Cmax Solvable by O(n)-time algorithm Section 2.1
Om||Cmax NP-hard for m > 2 Section 2.2
O2|ri|Cmax NP-Hard Section 2.3
Om|prmp|Cmax Solvable by O(r2) algorithm, where r is the

number of nonzero tasks
Section 2.4

Om|prmp, ri|Cmax Solvable by O(pn) algorithm, where p is
the number of distinct release times

Section 2.5

O2|contr, Cmax ≤ C|K Solvable by O(n) algorithm Section 3.1
O2|contr|(Cmax, K) Solvable by O(nlogn) algorithm Section 3.2
FO2|prmp|Cmax Solvable by O(n) algorithm Section 4

2 Classical Problems

2.1 O2||Cmax

First, we look at O2||Cmax, minimizing the makespan in an open shop with two machines
without preemption. The problem is polynomially solvable, and in fact the makespan of
an optimal scehdule can be stated explicitly in a closed form. We have that the makespan
of an optimal schedule is given by

Cmax = max{
∑
j

aj,
∑
j

bj,maxj{aj + bj}}.

An algorithm is presented by T. Gonzalez and S. Sahni [4]. In the following algorithm,
let a||b denote the concatenation of strings a and b.

Step 1: Let ao = b0 = 0. Let r = l = 0. Let S, S1, S2 be empty strings. Let A = {j|aj ≥
bj}, B = {j|aj < bj}.

Step 2: For each j in A, if aj ≤ br, then append j to the right of S. Otherwise, append
r to the right of S and let r := j.

Step 3: For each j in B, if bj ≤ al, then append j to the left of S. Otherwise, append l
to the left of S and let l := j.

Step 4: Remove all occurrences of the digit 0 in the string S.

Step 5: If
∑

(aj)− al <
∑

(bj)− br, then let S1 := S||r||l and S2 := l||S||r. Otherwise,
let S1 := l||S||r and S2 := r||l||S.

Step 6: Schedule the jobs on Machine 1 back-to-back in the order dictated by the string
S1, and schedule the jobs on Machine 2 back-to-back in the order dictated by the
string S2.

5

A useful feature of the schedule generated by this algorithm is that the jobs may be
scheduled in such a way that each machine has at most one idle period.

Pinedo [8] gives a rule which also will find an optimal schedule. The rule LAPT (longest
alternate processing time) selects for processing on a machine the job which has the
longest processing time on the other machine. This algorithm also runs in O(n) time and
also has the property that each machine has at most one idle period.

Since this algorithm achieves the lower bound of the optimal makespan, and since the
problem O2|prmp|Cmax has the same lower bound for an optimal makespan, then it follows
that this algorithm also solves the problem O2|prmp|Cmax.

2.2 Om||Cmax, for m > 2

The most natural progression in complexity from the previous problem is to extend the
number of machines from 2 to an arbitrary number m. We show that the problem
O3||Cmax is NP-hard, and so it follows that Om||Cmax is NP-hard for any m > 2. The
reduction is given by Gonzalez and Sahni [4]:

First, let us define the following problem, which we will call LOFT : Given an open shop
with m > 2 processors, a deadline τ , and a set of n jobs with processing times pij, is
there a nonpreemptive schedule with finish time less than or equal to τ?

In proving LOFT NP-complete, we will use the NP-complete problem PARTITION : A
multiset S = {a1, a2, ..., an} is said to have a partition iff there exists a subset U of the
indices 1 through n such that

∑
i∈U ai = (

∑n
i=1 ai)/2. We assume that each ai is integral.

The PARTITION problem is that of determining, for an arbitrary multiset S, whether
a partition exists or not.

We now show that if LOFT with m = 3 is solvable, then so is PARTITION. Suppose
we have a multiset S = {a1, a2, ..., an}. Construct the following open shop problem with
3n + 1 jobs, m = 3 machines, and all jobs but the last having one nonzero task. Job
3n+ 1 has three nonzero tasks:

p1j = aj p2j = 0 p3j = 0, 1 ≤ j ≤ n
p1k = 0 p2k = ak−n p3k = 0, n+ 1 ≤ k ≤ 2n
p1l = 0 p2l = 0 p3l = al−2n, 2n+ 1 ≤ l ≤ 3n
p1,3n+1 = T/2 p2,3n+1 = T/2 p3,3n+1 = T/2

where T =
∑n

i=1 ai, and let τ = 3T/2.

We now show that the above problem has a schedule with makespan less than or equal to
τ if and only if S has a partition. Suppose S has a partition, and let U, V be sets so that∑

i∈U ai = (
∑n

i=1 ai)/2, and V = S\U . Then a feasible schedule with makespan 3T/2
can be found as follows: schedule the tasks of Job 3n+1 on Machines 1, 2 and 3 in order,
so that the tasks finish at time T/2, T, and 3T/2 respectively. Schedule Jobs 1, 2, ..., n
on Machine 1 on the interval [T/2, 3T/2], and Jobs 2n + 1, 2n + 2, ..., 3n on Machine 3
on the interval [0, T]. Finally, schedule on Machine 2 Jobs n + 1, n + 2, ..., 2n which are

6

associated with the indices in set U on the interval [0, T/2] and the jobs associated with
indices in V on the interval [T, 3T/2].

Since
∑

i∈U ai = (
∑n

i=1 ai)/2, we have that each machine will be busy on the interval
[0, 3T/2], and the makespan of the schedule is τ = 3T/2.

Suppose now that a schedule of makespan τ exists. Since the total processing time of Job
3n + 1 is 3T/2, then its tasks must start at times 0, T/2 and T to finish by time 3T/2.
Then the remaining jobs on some machine must be processed on the intervals [0, T/2] and
[T, 3T/2]. Since there is no preemption, and the total processing time of the respective
tasks of the remaining jobs is

∑
i∈S ai = T , then it follows that there is no idle time on

the given intervals. Hence, a partition of S can be found by taking the indices of the jobs
processed on the interval [0, T/2] (with the job indices adjusted accordingly to lie within
the range 1 through n).

Thus, we have shown that the problem O3||Cmax is NP-hard, and it follows that the more
general problem Om||Cmax is also NP-hard.

2.3 O2|rj|Cmax

Next we consider what happens when not all jobs are available for processing at time
0. Each job j now has a release time rj. That is, Job j may not be scheduled on any
machine before time rj. It is shown by Lawler et al. [5] that the problem O2||Lmax is
NP-hard. We show here that O2|rj|Cmax is also NP-hard by reducing the former problem
to it.

Suppose we have an instance of O2||Lmax. Let Job j have processing time aj on Machine
1 and bj on Machine 2 as usual, and have due date dj. Define an instance of O2|rj|Cmax

as follows. Let a′j = aj and b′j = bj be the processing times of Job j on Machines 1 and
2 respectively, and let r′j = max{dj|j = 1, 2, ..., n} − dj be the release time of Job j.

Suppose that O2|rj|Cmax can be solved in polynomial time; let C ′max be the makespan
of an optimal schedule S ′ for the above problem formulation. Construct a schedule for
O2||Lmax by mapping the interval [t1, t2] of S ′ to the interval [C ′max − t2, C ′max − t1] in the
new schedule S. Since the the processing done in S ′ falls in the interval [0, C ′max], then it
follows that the processing done in S also falls in the interval [0, C ′max], and so Cmax = C ′max.

We have that Job j will be finished at time C ′max − rj = Cmax− (max{dj|j = 1, 2, ..., n} −
dj) = Lmax + dj. Since C ′max is minimal by the assumption that S ′ is optimal, then we
have that Lmax is also minimal, and so S is an optimal schedule for O2||Lmax. However,
since we have that O2||Lmax is NP-hard, it must follow that our original assumption was
wrong and so O2|rj|Cmax is also NP-hard.

7

2.4 Om|prmp|Cmax

We have shown that Om||Cmax is NP-Hard for all m > 2. Next we look at the case with
m machines where preemption is allowed. Again, we find that the optimal makespan for
an instance of this problem can be stated in a closed form of the processing times. We
have

Cmax = maxi,j{Wi, Pj}

where Wi =
∑n

j=1 pij is the workload of Machine i, and Pj =
∑m

i=1 pij is the total
processing time of Job j.

An algorithm is presented by Gonzalez and Sahni [4], which utilizes maximum edge
matchings in a bipartite graph. A similar algorithm using matrices and decrementing
sets is also explained in Pinedo’s textbook [8]. The latter is presented here.

Let P be an m×n matrix of the processing times pij. Row i or Column j is called tight if
the sum of its entries is equal to C = maxi,j{Wi, Pj}, otherwise it is called slack. We start
by finding a decrementing set for P . A decrementing set is a set of entries containing
exactly one entry from each tight row and column, and at most one entry from each other
row or column. Such a decrementing set can always be found for a nonnegative matrix,
though the proof is omitted.

When the decrementing set is found, we find ∆ so that if ∆ is subtracted from all the
entries in the decrementing set, the resulting matrix P ′ has one more zero entry or one
more tight row or column than P . The schedule corresponding to the decrementing set
and the value ∆ includes the processing of the corresponding tasks in the decrementing set
on the interval [0,∆], and then recursively running the algorithm on the newly obtained
matrix P ′ of the remaining processing time of all tasks.

Since ∆ is integral, we have that this process terminates, and it will do so in polynomial
time.

2.5 Om|rj, prmp|Cmax

The next problem we look at takes the previous problem, m machines with preemption,
and adds release times. Let the release times of the jobs be given by rj, j = 1, 2, ..., n. Of
these, let a1 < a2 < ... < ap be all the distinct release times. The algorithm finds, for a
given value ap+1 > ap, whether a feasible schedule exists so that all jobs are completed
by time ap+1. Thus, we may adjust the value of ap+1 until we find a value C for which
there is a feasible schedule for ap+1 = C, but no schedule for any value of ap+1 less than
C. We assume that the release times are integral, and so the makespan of the optimal
schedule is also optimal.

Let Ik = ak+1− ak for k = 1, 2, ..., p. Let xijk represent the amount of processing of job j
on machine i during the interval [ak, ak+1]. Then consider the following linear program:

8

∑m
i=1 xijk ≤ Ik 1 ≤ j ≤ n 1 ≤ k ≤ p (1)∑n
j=1 xijk ≤ Ik 1 ≤ i ≤ m 1 ≤ k ≤ p (2)∑p
k=1 xijk = pij 1 ≤ j ≤ n 1 ≤ i ≤ m (3)

xijk ≥ 0 if rj ≤ ak (4)
xijk = 0 if rj > ak (5)

Constraint (1) requires that each machine is assigned no more processing time than the
interval length for any given interval. Constraint (2) requires that each job is scheduled
for no more than the interval length for any given interval. Constraint (3) requires that
each task is finished before time ap+1. Constraints (4) and (5) require that a job is not
processed before its release time.

The method to find the makespan is as follows. Find a value C so that a feasible solution
for the above linear program exists for ap+1, but no feasible solution exists for any value
less than C (assuming integral values, such a value can be found in time logarithmic in
the job lengths). Given a feasible solution, use the algorithm for Om|prmp|Cmax on each
of the p intervals [ak, ak+1], and combine the solutions to create a feasible schedule. Since
each use of the algorithm is polynomial time, then the total running time of this part of
the algorithm is linear in p, the number of intervals (which is bounded above by n, the
number of jobs). Thus the above algorithm is polynomial.

3 Open Shop Scheduling with Controllable Process-

ing Times

3.1 O2|contr, Cmax ≤ C|K

Now we consider the problem of finding an optimal schedule on two machines when we
are able to control the processing times of each task. However, compressing a task incurs
some additional cost. Hence the problem is to minimize the makespan while not exceeding
a given cost, or minimizing the cost while not exceeding a given makespan. Cheng and
Shakhlevich [1] give an algorithm for the latter problem which runs in O(n) time, and
also give an algorithm which finds all the breakpoints of the related bicriteria problem
which runs in O(nlogn) time. The algorithms are described here.

Let aj and bj be the processing times of job j on Machines 1 and 2 respectively. Let aj
and aj be the upper and lower bound for the possible values of processing time for Job j

on Machine 1, and similarly define bj and bj for Machine 2. Let the cost of compressing
Job j on Machine 1 by one unit be given by αj, and on Machine 2 by βj. For given
processing times aj and bj of Job j, let uj = aj − aj and vj = bj − bj be the compression
amounts of Job j on Machines 1 and 2 respectively. Let K =

∑n
j=1 (αjuj + βjvj) be the

total compression cost. Thus, the problem of minimizing K while obtaining a makespan
no larger than some fixed value C can be represented as O2|contr, Cmax ≤ C|K.

We know from an algorithm presented earlier in this paper that if we are given the

9

processing times for each job, then the minimum makespan can be phrased as

Cmax = max{
∑
j∈N

aj,
∑
j∈N

bj,maxj{aj + bj}}.

Futhermore, we can find a schedule with such a makespan in which each machine has at
most one idle period (including time between the end of a machine’s workload and the
makespan). As such, we may create an artificial job n+1 whose minimum processing time
is 0 on both machines, the maximum processing time is arbitrarily large (say equal to the
target makespan value C), and the cost to compress a task of the job is 0. This simplifies
the problem slightly by allowing us to consider schedules with

∑n
j=1 aj =

∑n
j=1 bj = C.

The problem of minimizing the compression cost then becomes equivalent to the following
linear programming problem:

LP (AB) : maximize
∑

j∈N (αjuj + βjvj)

subject to
∑

j∈N aj + uj) = C (I)∑
j∈N (bj + vj) = C (II)

(aj + uj) + (bj + vj) ≤ C, j ∈ N (III)
0 ≤ uj ≤ aj − aj, j ∈ N (IV)

0 ≤ vj ≤ bj − bj, j ∈ N (V)

Ignoring the constraint (III), we can separate the above LP into two continuous knapsack
problems, one for each machine. If the solution induced by the two knapsack problems
does not violate constraint (III), then it follows that such a solution will be optimal to the
LP (since we can only hope to improve on an optimal solution by removing constraints).

If the combined solutions do not satisfy constraint (III), then there is exactly one Job k
such that (ak + uk) + (bk + vk) > C. We call such a job critical. Cheng and Shakhlevich
prove that if a critical job exists, then there is a solution (u∗,v∗) to LP(AB) such that
(ak + u∗k) + (bk + v∗k) = C, and also state as a corollary that such a solution must not
satisfy u∗k = v∗k = 0 nor satisfy u∗k = ak − ak and v∗k = bk − bk (that is, it is neither the
case that both tasks of Job k are both fully compressed or both fully decompressed).

The paper goes on to describe a new linear programming problem, LP ′(AB), that does
not include Job k, and proves that it is equivalent to LP (AB), determining the values of
uk and vk based on the values of the remaining variables. The new linear problem is an
instance of the generalized upper bound resource allocation problem, which is solvable in
O(n) time.

Thus, the algorithm is as follows:

Step 1: Find solutions uA,vB to the two continuous knapsack problems associated with
LP (AB).

Step 2: If uA and vB satisfy constraint (III), then return u∗ = uA,v∗ = vB.

Step 3: Else, determine a critical job k, formulate LP ′(AB), and find its solution u′j, v
′
j, j ∈

N\{k}. Let u′k−
∑

j∈N\{k} (bj + vj)−ak, and v′k−
∑

j∈N\{k} (aj + uj)−bk. Return
u∗ = u′,v∗ = v′.

10

The continuous knapsack problems can each be solved in O(n) time, as can the deter-
mination of a critical job and the problem LP ′(AB). Thus, the running time of the
algorithm is O(n).

3.2 O2|contr|(Cmax, K)

The previous algorithm will provide us with an optimal solution only when we know what
value we wish our makespan to take. We may be more interested in finding a variety of
combinations of the objective values Cmax and K. In this case, we would want to find all
the Pareto optimal solutions. We say that a schedule S is Pareto optimal if there does
not exist a schedule S ′ such that Cmax(S

′) ≤ Cmax(S) and K(S ′) ≤ K(S) where one of
these two inequalities is strict.

Recall that the algorithm for the problem in the previous section will attempt to find an
optimal schedule by solving a continuous knapsack problem for each machine. As we solve
these problems for varying values of C, the algorithm will always choose to decompress the
jobs which yield the best change in the objective value, and will not decompress the jobs
which improve the objective function the least. If we sort the tasks on Machines 1 and 2
respectively so that αi1 ≥ αi2 ≥ ...αin+1 = 0 and βj1 ≥ βj2 ≥ ≥ βjn+1 = 0, then we can
decompress the tasks in the order i1, i2, ..., in+1 and j1, j2, ..., jn+1 until decompressing a
job any further will not satisfy

∑n
j=1 aj =

∑n
j=1 bj = C. That is, in any optimal schedule,

there will be two tasks il and jm that are “next in line” to be decompressed if some slack
became available. In the case that the optimal schedule for a given value of C has a
critical job, then it is the case that if the tasks are listed in the above order, excluding
the tasks of the critical job, then the same result will follow, with the compression values
of the critical job being determined by the compression rates of the other jobs.

Using the above fact, we see that the structure of the tasks ordered in such a way will
take on one of four different types. If there is no critical job, then the tasks will be
decompressed in order, and we will have on each machine a group of fully decompressed
jobs, followed by il (or jm respectively), followed by a group of fully compressed jobs.
We will call this schedule Type 1. If there exists a critical job, then one ofthe following
three structures will exist. Either both tasks of job k will reside in the group of fully
decompressed jobs, in which case we would like to further compress the tasks but cannot
without violating constraint (III) (Type 2a), or we would like to further compress the
task on Machine 2 and a different task il 6= k on Machine 1 (Type 2b), or we would like to
further compress the task on Machine 1 and a different task jm 6= k on Machine 2 (Type
2c). In Types 2b and 2c, if we would like to compress a task other than the respective
task of Job k, then this implies that either the task of Job k is fully decompressed or still
fully compressed.

We can find the first Pareto optimal point by taking the minimum makespan value C0 =
Cmax = max{

∑
j∈N aj,

∑
j∈N bj,maxj{aj+bj}} and running the algorithm for the problem

O2|contr, Cmax ≤ C0|K.

From this first point, we can move to the next breakpoint by decompressing one task on
each machine at the same rate; in particular, we will decompress the task that offers the

11

best improvement in the objective function. For each type of schedule, this pair of jobs
is given by

(i, j) =


(il, jm) if S0 is of Type 1
(il, k) if S0 is of Type 2b
(k, jm) if S0 is of Type 2c
(il, k) if S0 is of Type 2a and αil + βk ≥ βjm + αk
(k, jm) if S0 is of Type 2a and αil + βk < βjm + αk

We decompress Tasks i and j by the same amount z, given by

z =

{
min {ai − ai, bj − bj}, if i 6= j,

min {ai − ai, bj − bj, C0 − (ai + bj)}, otherwise.

The makespan of the next Pareto optimal point is C1 = C0 + z. Solving the problem
O2|contr, Cmax ≤ C1|K, we can find the corresponding compression cost K1 and Schedule
S1. By repeating the steps to go from the first Pareto optimal point to the second, we
can find each Pareto optimal point, until all tasks have been fully decompressed.

Thus, the algorithm can be described as follows:

Order the tasks on each machine by decreasing values of αj and βj respectively. Find
the solution to the problem O2|contr, Cmax ≤ C0|K and find the compression values aj, bj
for each task using the algorithm in the previous section, and determine the type of the
corresponding schedule. Let k = 1. While there are still compressed tasks, find the pair
of tasks (i, j) to be decompressed, and determine the compression amount z. Update the
values as follows:

ai := ai + z, Ck := Ck−1 + z
bj := bj + z, Kk := Kk−1 − (αi + βj)z
k := k + 1.

Sorting the jobs takes O(nlogn) time. The number of iterations is limited to the number
of times a task becomes fully decompressed, or a job becomes critical, so does not exceed
3n + 1. Solving the initial problem takes O(n) time, and each other operation in the
algorithm takes constant time. Hence the algorithm for finding the breakpoints of the
Pareto optimal solutions is O(nlogn).

4 Flexible Open Shop Scheduling

4.1 Introduction

Next we consider the flexible open shop problem FO2|prmp|Cmax, as well as the related
problem Pm|prmp|Cmax. Recall that, in a two machine open shop, we have n jobs to be

12

processed and each job j requires aj units of processing on the first machine and bj units
of processing on the second machine. In the flexible open shop, there are m+ 1 machines
comprising two stages. Machine 0 comprises Stage 1, while machines 1, 2, ...,m comprise
Stage 2. Job j has two tasks which must be completed. Task 1 of Job j requires aj units
of processing on Stage 1, and Task 2 of Job j requires bj units of processing on Stage
2 which may be completed by any number of the machines 1, 2, ...,m (that is, Stage 2
models an m-machine parallel machine environment). We retain the restriction that a job
may not be processed on both stages at the same time, nor may it be processed by more
than one machine in a stage at the same time. Our goal is to find a schedule minimizing
the makespan Cmax, defined as the time at which no job requires further processing.

We show that the makespan of an optimal schedule is given by

C∗max = max{
∑
j

aj,
1

m

∑
j

bj,maxj{aj + bj}}

and we also give an O(mn)-time algorithm for finding a schedule with such a makespan.

4.2 Solving Pm|prmp|Cmax

It is helpful to study the problem Pm|prmp|Cmax before looking at the Flexible Open
Shop problem. We do so because we have noted that in FO2|prmp|Cmax, Stage 2 models
the same environment as Pm|prmp|Cmax. In the problem Pm|prmp|Cmax, there are again
n jobs, but each job has only one task which requires pj units of processing on any of the
m machines. A job may not be processed on two machines at the same time. The problem
has been implicitly solved in that Pm|prmp|Cmax reduces from P |tree, prmp|Cmax which
has ben shown to be polynomially solvable ([3],[7]).

Lemma 1: The makespan of a feasible schedule for P2|prmp|Cmax is no less than

C2 = max{ 1

m

∑
j

pj,maxj{pj}}.

Proof. The total processing time required is
∑

j pj, and if this workload is divided evenly

among the m machines, then each machine will finish at time 1
m

∑
j pj. If one machine

does less than this amount of processing, then some other machine will do more as a
consequence, and at least one machine will end later than time 1

m

∑
j pj. Since a job may

not be processed on two machines at once, then no job j may finish before time pj, and so
one machine may not finish before time maxj{pj}. Hence, the makespan of any feasible
schedule is no less than C2.

We now present a straightforward algorithm to solve Pm|prmp|Cmax.

Algorithm 2:

13

Step 1: Determine the value C2 as in Lemma 2. Let i := 1.

Step 2: For j := 1 to n, while Job j is not yet finished,

(a) Schedule Job j on Machine i until it is completed or until time C2, whichever
occurs first.

(b) If Job j is not yet completed, preempt it. If time C2 is reached, let i := i+1.

Theorem 3: Algorithm 2 produces an optimal schedule for Pm|prmp|Cmax.

Proof. Since there are m machines, then there are mC2 ≥
∑
pj units of processing

available. If Job j first begins processing on some machine at time t, then it will continue
being processed until it is finished or until time C2. If time C2 is reached, then Job j will
be processed on the entire interval [t, C2] and will be completed on the interval [0, t] on
the next machine. If the job is not completed on this interval, then pj would exceed C2, a
contradiction. Thus, no job is scheduled on two machines concurrently. Since no feasible
schedule can have makespan less than C2 and Algorithm 2 produces a feasible schedule
with makespan C2, then the scheduled produced by Algorithm 2 is optimal.

4.3 Solving FO2|prmp|Cmax

By combining ideas found in the above algorithm, we can now solve the problem FO2|prmp|Cmax.
We start again by finding a lower bound for the makespan of a feasible schedule.

Lemma 4: The makespan of a feasible schedule for FO2|prmp|Cmax is no less than

C = max{
∑
j

aj,
1

m

∑
j

bj,maxj{aj + bj}}.

Proof. The earliest completion time of the first machine is no less than
∑

j aj. The
completion time of any one job is no less than maxj{aj + bj}. The completion time of
the latest machine among 1, 2, ...,m is no less than 1

m

∑
j bj (with equality only if the

workload is split evenly among the m machines). Hence, any feasible schedule may not
finish before time C. Thus, the makespan of a feasible schedule is no less than C.

We now present an algorithm which finds an optimal schedule.

Algorithm 5:

Step 1: Determine the value C as in Lemma 4.

Step 2: Schedule jobs in the order 1, 2, ..., n on Machine 0. Let fj be the time at which
Job j finishes on Machine 0 and let f0 = 0, so that Job j is scheduled on Machine
0 on the interval [fj−1, fj].

Step 3: Let t := 0, and let i := 1.

14

Step 4: For l from 1 to n, while Job l is not completed,

(a) If i ≤ m, then

• Skipping over the interval [fl−1, fl], schedule Job l on Machine i from
time t onward until the task is completed or time C is reached, whichever
occurs first.

• If the task is completed, then let t be the time of completion the task.

• If time C is reached, preempt the task if it is not yet finished. Let t := 0
and i := i+ 1. If i > m, let k := l.

(b) Else, if i > m,

• Find an interval [t1, t2] upon which a machine is idle, and schedule job
l on the idle machine starting from time t1 until the job is completed
or until time t2, whichever occurs first.

Step 5: Let A be the set of distinct intervals upon which job k is processed on two
machines at once. Let B be the set of distinct intervals upon which job k is not
processed.

Step 6: While A is not empty,

(a) Choose an interval [t1, t2] from A. Let m1 ∈ {1, 2, ...,m} be a machine upon
which job k is processed on [t1, t2]. Choose an interval [s1, s2] from B.

(b) Let d = min{t2 − t1, s2 − s1}.
(c) If t2 − t1 > d, then split [t1, t2] into two smaller intervals [t1, t1 + d] and

[t1 + d, t2]. Remove [t1, t2] from A and add [t1, t1 + d] and [t1 + d, t2] to A.

(d) Else if s2 − s1 > d, then split [s1, s2] into two smaller intervals [s1, s1 + d]
and [s1 + d, s2]. Remove [s1, s2] from B and add [s1, s1 + d] and [s1 + d, s2]
to B.

(e) Choose a machine m2 ∈ {1, 2, ...,m} which, on the interval [s1, s1 + d], is
either idle or processing a job which is not processed on [t1, t1 + d].

(f) Swap the operations of Machine m1 on [t1, t1+d] and Machine m2 on [s1, s1+
d] with one another.

(g) Remove [t1, t1 + d] from A and remove [s1, s1 + d] from B.

Lemma 6: There are at most k idle intervals created in Step 4(a) of Algorithm 5, and
they are all pairwise disjoint.

Proof. In Step 4(a) of the algorithm, jobs are scheduled back to back, with the exception
that Job j is not scheduled on the interval [fj−1, fj]. Since jobs are preempted only at
time C, in which case they are started again on the next machine at time 0, then we
have that no job will be preempted at time fj−1 more than once (otherwise, the job will
require processing in excess of |[fj+1, fj] ∪ [fj, C] ∪ [0, fj−1]| = C, a contradiction to our
choice of C). Thus, there will be at most one idle period for each of the k jobs scheduled
by Step 4(a), and each such interval is contained in one of the pairwise disjoint intervals
[fj−1, fj].

15

Lemma 7: At any point in Algorithm 5, at most one job k will be scheduled on any two
machines at the same time.

Proof. Any job which is scheduled entirely by Step 4(a) is scheduled in such a way to
avoid scheduling the job on two machines at the same time. Any job which is scheduled
entirely by Step 4(b) is scheduled only on the idle intervals created within the previous
loop, which are pairwise disjoint by Lemma 6. When two operations are swapped by Step
6 of the algorithm, the swapped jobs are chosen in such a way to avoid scheduling any
job on two machines at the same time. Thus, the only job which may be scheduled on
two machines at once is the job which is partially scheduled by each of the methods in
Step 4; namely, the job denoted k in the algorithm.

Theorem 8: Algorithm 5 generates an optimal schedule.

Proof. So long as Algorithm 5 returns a feasible schedule, then the resulting schedule is
optimal by Lemma 7. By choice of C, we know that the workload of Stage 1 will be
finished in the interval [0, C]. Similarly, the workload of Stage 2 will be finished in the
interval [0, C], since the algorithm will not leave any idle periods on the Stage 2 machines.
The steps of the algorithm ensure that no job is scheduled both on Machine 0 and one of
the machines 1, 2, ...,m concurrently. Thus, we need only prove there exists an interval
[s1, s2] and a machine m2 as described in Steps 6(a) and 6(e) of the algorithm.

Let S be the (possibly infeasible) schedule produced by Step 5 of the algorithm, and
suppose job k is processed on two machines at once, say on the interval [t1, t2]. If it
were the case that there does not exist an interval [s1, s2] upon which k is not processed,
then k is processed on the entire interval [0, C]. Since k is processed by two machines on
the interval [t1, t2], then we have that the required processing time of Job k is at least
C + (t2 − t1) > C, a contradiction by choice of C. Thus, there must exist some interval
[s1, s2] upon which k is not processed.

If one of the machines among 1, 2, ..,m is idle on the interval [s1, s2], then we are done.
Otherwise, since we assume k is not processed on one of the machines 1, 2, ...,m on the
interval [s1, s2], then by Lemma 5 we know that the machines 1, 2, ...,m are processing
m distinct jobs. On the interval [t1, t2], there are 2 machines processing k, and so there
are at most m − 1 distinct jobs besides k processed on this interval, and so there must
exist a machine among 1, 2, ...,m which processes some job not processed on the interval
[t1, t2].

Theorem 9: Algorithm 5 finishes in O(mn) time.

Proof. First, note that the end of an idle period created in the loop in Step 4(a) will
correspond to the completion of a task on the first machine. This is because the idle
period occurs only when a job skips past the period due to the fact that the same job is
processed on Stage 1. Once the job is completed on Stage 1, the job will be processed
on Stage 2. Thus, the times at which jobs are preempted in Step 4(b) correspond to the
time at which a task on Stage 1 finishes.

16

The structure of the schedule changes only when a machine stops processing a job, and
this occurs precisely when a task is finished or a job is preempted. It follows that the
number of maximal intervals upon which the structure of the schedule does not change
is at most the sum of the number of times at which a task is completed (1 for each of
the 2n tasks) and the number of distinct times a job is preempted (only 1, since jobs are
preempted only at time C in Step 4(a) or at a time corresponding to the completion of
a task in Step 4(b)). That is, the number of maximal intervals upon which the structure
of the schedule does not change is given by 2n+ 1.

Letting A be the set of intervals upon which Job k is processed on two machines con-
currently, and letting B be the set of intervals upon which Job k is not processed on
any machine, we note that |A| + |B| can not exceed the number of intervals, and so
|A| + |B| ≤ 2n + 1. During each iteration of Step 6, a swap occurs whereby either an
interval is fully removed from A (when the inequality in Step 6(d) is satisfied), or an
interval is fully removed from B (when the inequality in Step 6(c) is satisfied). Thus, the
number of iterations of the loop does not exceed 2n+ 1.

Thus the work required is as follows. There are no more than m preemptions in Step 4(a),
resulting in no more than m additional iterations. At most k idle periods are created in
Step 4(a), and so there are no more than k preemptions caused by Step 4(b). Thus, the
loop iterates no more than n+m+ k ≤ 2n+m times, and each iteration does constant
work. Creating the sets A and B in Step 5 can be done in O(nm) time. Step 6 iterates no
more than 2n+ 1 times, and constant work is done in each iteration. Thus, the workload
is done in O(2n+m+ nm+ 2n+ 1) = O(nm) time.

4.4 Example

We will use Algorithm 5 to find an optimal schedule for the following instance of
FO2|prmp|Cmax with 4 jobs and 4 machines, where Machines 2, 3, and 4 form Stage 2.

job 1 2 3 4 5 6
aj 0 3 3 2 1 1
bj 5 5 7 3 8 2

We find that C = 10 =
∑
aj = 1

3

∑
bj = a3 + b3, so our schedule will have a makespan of

10. We first schedule the jobs back-to-back on Machine 1. Using the algorithm, we have
no problem scheduling Jobs 1 and 2 on Machine 2. While processing Job 3 on Machine 3,
we must preempt the job at time 3 and start it again at time 6, due to the fact that Job
3 is processed on Stage 1 during the interval [3,6]. Similarly, we preempt Job 5 during
its processing on Machine 4. While processing Job 5 on Stage 2, we reach time 10 on the
last machine. We let k = 5, and progress to step 4(b) of Algorithm 5.

We are still processing Job 5 when step 4(b) begins. We find an idle interval which was
created in step 4(a); Machine 3 is idle on the interval [3,6]. Upon completion of Job 5, we
do the same for Job 6, using the intervals [5,6] and [8,9] on Machines 3 and 4 respectively.
Figure 1 shows the state of the partial schedule at this point (processing assigned in step

17

4(b) is shown in grey).

Figure 1.

In step 5, we create the sets A = {[3, 5]} and B = {[0, 3]}, corresponding to the intervals
where Job 5 is processed on more than one machine and no machines respectively. We
choose the single interval in each set, and find the value d = min{5−3, 3−0} = 2. Thus,
we break the interval [0,3] into the two smaller intervals [0,2] and [2,3], and update the
set B = {[0, 2], [2, 3]}.

On the interval [3,5], Jobs 1, 3, 5 are processed. On [0,2], Jobs 1,3,4 are processed on
Stage 2. Since Job 4 is not processed on [3,5], we can safely swap the processing of Job 4
on the interval [0,2] with the processing of Job 5 on [3,5]. After doing so, we remove the
intervals from the sets A and B. We now have that set A is empty, and so we rest assured
knowing that we are left with a feasible schedule with minimal makespan, as depicted in
Figure 2.

Figure 2.

4.5 Optimal Number of Stage 2 Machines

In a related problem, we may have control over the number of machines available for use
in Stage 2. In general, adding machines will decrease the completion time of the schedule,

18

so some cost is usually associated with adding machines. The simplest cost function in
such a case would be

K(m) = αC∗max(m) + βm.

In this cost function, C∗max(m) represents the makespan of an optimal schedule in which
Stage 2 has m machines. The values α and β represent the incurred cost of delaying the
schedule by one unit of time and the cost of acquiring an additional machine respectively.
Given an instance of FO2|prmp|Cmax and values α and β, we wish to find the value m∗

which minimizes the cost function K(m).

Clearly we must have that m ≥ 1, and an upper bound for m presents itself; we know
that the makespan of an optimal schedule for FO2|prmp|Cmax is given by the formula

C∗max = max{
∑
j

aj,
1

m

∑
j

bj,maxj{aj + bj}}.

As m goes off to infinity, we have that the Stage 2 component of the formula goes to zero,
and the other two components determine the makespan. That is, once we have that

max{
∑
j

aj,maxj{aj + bj}} ≥
1

m

∑
j

bj,

then adding more machines will not help to decrease the makespan. Solving for m, we
get that adding more machines will not decrease the makespan of an optimal schedule
once m reaches the value

m′ =

⌈
min

{∑
j bj∑
j aj

,min

{ ∑
j bj

aj + bj

}}⌉
.

So long as m < m′, we must have that C∗max(m) is equal to 1
m

∑
j bj. Thus, our problem

is to find the value m∗ which minimizes the function

K(m) = α
1

m

∑
j

bj + βm.

Using elementary calculus, we use the derivative of the function to determine when the
function is minimized or maximized,

K ′(m) = −α 1

m2

∑
j

bj + β

K ′′(m) = 2α
1

m3

∑
j

bj

We have that K ′(m) = 0 when m = ±
√

α
∑

j bj

β
. Clearly only the positive value of m

interests us. When m takes on this value, the second derivative is positive, indicating

19

that the point represents a local minimum. Since we require that m∗ be an integer, we

simply check the value of the cost function K(m) at the values
⌊
α

∑
j bj

β

⌋
and

⌈
α

∑
j bj

β

⌉
and compare the two values to find the minimum; since the second derivative is positive
for all positive values of m, one of these two points is guaranteed to be the absolute
minimum for the function.

Upon finding the values m′ and m∗, we compare the two; if m′ ≤ m∗, then the optimal
number of machines for the problem is m′. Otherwise, the optimal number of machines
for the problem is m∗.

4.6 Example

We will now consider the example in section 4.4, now attempting to minimize the oper-
ation costs. Let α = 4 and β = 25, to represent that each machine required in Stage 2
incurs a cost of 25, and each unit of time that is required in processing incurs a cost of
4. Our cost function is K(m) = 4C∗max(m) + 25m.

We first find the value m′:

m′ =
⌈
min

{∑
j bj∑
j aj
,min

{∑
j bj

aj+bj

}}⌉
=
⌈
min

{
30
10
, 30

10

}⌉
= 3

This lets us know that having more than 3 machines will not yield a schedule with smaller
makespan than an optimal schedule using 3 machines. Next, we find the value m∗ which
minimizes K(m):

√
α
∑

j bj

β
=

√
(4)(30)

(25)
≈ 2.191

Thus, either m∗ = 2 or m∗ = 3. We find that K(2) = 4(1
2
(30)) + 25(2) = 110 and

K(3) = 4(1
3
(30)) + 25(3) = 115. Thus, m∗ = 2. Since 2 ≤ m′ = 3, then we have that the

cost is minimized when Stage 2 contains 2 machines.

5 Conclusion

We have shown results about some classical problems in open shop scheduling. We have
seen how changing the number of machines affects the complexity of a problem, as well
as how adding the processing constraints rj and prmp affect the complexity of problems.
Beyond these changes, there are many more ways to change the processing constraints of
the system that render existing algorithms obsolete. Similarly, we have only considered

20

minimization of the makespan as the objective goal. Many other objective functions can
be considered in open shop scheduling to create even more probems.

We have also studied two modern open shop scheduling problems. With the ability to
control processing times, we now have a multi-objective problem where we must specify
a bound on one of the objectives, or otherwise find all pareto optimal pairs to solve the
problem. Despite the increase in variables and decisions, the problem remains to be O(n)
when we set a maximum value for the makespan, and O(nlogn) if we prefer to find all
the notable Pareto optimal solutions.

The other modern problem we have studied is the flexible open shop problem. We have
shown that the problem can be solved by an O(n)-time algorithm and have proved the
correctness of the algorithm. Many related problems can be considered by altering the
machine structure of each stage or by changing the processing constraints. In doing so,
many flexible open shop problems may be declared as NP-hard when a related subproblem
is already NP-hard. For instance, we may easily conclude that FO2||Cmax is NP-hard due
to the fact that Pm||Cmax is NP-hard [6].

6 References

[1] T.C.E. Cheng and N. Shakhlevich, Two-machine open shop problem with controllable
processing times, 2006.

[2] Y. Cho and S. Sahni, Preemptive Scheduling of Independent Jobs with Release and
Due Times on Open, Flow and Job Shops, Operations Research Vol. 29, 1981, pp. 511-
522.

[3] T. Gonzalez and D.B. Johnson. A new algorithm for preemptive scheduling of trees.
J. Assoc. Comput. Mach., 27(2):287-312, 1980.

[4] T. Gonzalez and S. Sahni, Open shop scheduling to minimize finish time, J. Assoc.
Comput. Mach. 23 (1976), pp. 665-679.

[5] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Minimizing maximum lateness
in a two-machine open shop, Math. Oper. Res., 6(1):153-158, 1981.

[6] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Ann. of Discrete Math., 1:343-362, 1977.

[7] R.R. Muntz and E.G. Coffman, Jr. Preemptive scheduling of real-time tasks on
multiprocessor systems. J. Assoc. Comput. Mach., 17:324-338, 1970.

[8] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Third Edition, Springer,
2008

21

