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1. Lecture 1: The associated primes of powers of ideals

The primary decomposition of ideals in Noetherian rings is a fundamental result in
commutative algebra and algebraic geometry. It is a far reaching generalization of the
fact that every positive integer has a unique factorization into primes. We recall one
version of this result.

Theorem 1.1. Every ideal I in a Noetherian ring R has a minimal primary decomposition

I = Q1 ∩ · · · ∩Qs

where each Qi is a primary ideal and Q1 ∩ · · · ∩ Q̂j ∩ · · ·Qs 6⊂ Qj for all j = 1, . . . , s.
Furthermore, the set of associated primes of I, that is,

ass(I) =
{√

Q1 = P1, . . . ,
√
Qs = Ps

}
is uniquely determined by I.

The primary decomposition of an ideal is a standard topic in most introductory com-
mutative algebra books; one reference is Chapter 5 of Atiyah and Macdonald’s classic
book [2].

Starting in the 1970’s, (and related to the theme of this lecture series) the following
problem was investigated:

Question 1.2. Given an ideal I in a Noetherian ring R, describe the sets ass(Is) as s
varies.

At first glance, it might be surprising that the set of associated primes of an ideal
changes when you take its power. However, as the next example shows (and the many
examples of my second lecture on this topic), new associated primes can appear in higher
powers, and in fact, all sorts of pathological behaviour can occur.

Example 1.3. In the ring R = k[x, y, z], consider the monomial ideal I = 〈xy, xz, yz〉.
Then this ideal has the primary decomposition

I = 〈x, y〉 ∩ 〈x, z〉 ∩ 〈y, z〉 = P1 ∩ P2 ∩ P3.

On the other hand, the primary decomposition of I2 is given by

I2 = 〈x2y2, x2yz, xy2z, x2z2, xyz2, y2z2〉
= 〈x, y〉2 ∩ 〈x, z〉2 ∩ 〈y, z〉2 ∩ 〈x2, y2, z2〉.

We thus have

ass(I) = {P1, P2, P3} ( ass(I2) = ass(I) ∪ {〈x, y, z〉}.

In 1979, Brodmann [7] proved the following result which gives an asymptotic answer to
Question 1.2.
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Theorem 1.4 ([7]). For any ideal I ⊆ R in a Noetherian ring, there exists an integer s0
such that

ass(Is) = ass(Is0) for all s ≥ s0.

As we shall see in the next lecture, Theorem 1.4 inspires a number of new questions,
many of which we only have partial solutions. Given the importance of Brodmann’s result,
the goal of this lecture is to sketch out the main ideas behind the proof of Theorem 1.4.
A by-product of our approach is to learn some techniques related to associated primes
that will hopefully be useful in your own research. As we move forward, R will always
denote a Noetherian ring.

As a final comment, these lecture notes are greatly indebted not only to Brodmann’s
original paper, but to the monograph of McAdam [32] and the lecture notes of Swanson
[41].

1.1. Associated primes of modules. We begin with a review/introduction to associ-
ated primes of modules. As we shall see, this is the correct point-of-view to take when
studying the associated primes of Is. Much of this material is standard. We use [43] as a
reference, although other books contain this material.

Definition 1.5. Let N ⊆ M be modules over R. A prime ideal P ⊆ R is an associated
prime of the R-module M/N if there exists some m ∈M such that

(N :R m) = {r ∈ R | rm ∈ N} = P.

Note that if N = (0M) is the zero submodule of M , then P is an associated prime of
M ∼= M/(0M) if there exists an m ∈ M such that (0M :R m) = P . This observation is
related to the next definition.

Definition 1.6. Let M be an R-module. For any m ∈M , the annihilator of m is

ann(m) = (0M :R m) = {r ∈ R | rm = 0M}.

It is a straightforward exercise to show that ann(m) is an ideal of R. It follows from what
we have said that P is an associated prime of the module M if and only if P = ann(m)
for some m ∈M .

Definition 1.7. Let N ⊆M be modules over R. The set of associated primes of M/N is

AssR(M/N) = {P ⊆ R | P a prime ideal associated to M/N}.

We now state a number of useful facts about AssR(M/N).

Theorem 1.8 ([43, Corollary 2.1.18]). Let N ⊆M be modules over a Noetherian ring R.
Then

|AssR(M/N)| <∞.
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Notice that we are using a slightly different notation for the set of associated primes
for modules versa the set of associated primes of an ideal (as in Theorem 1.1). However,
the relationship is explained in the next theorem.

Theorem 1.9 ([43, Corollary 2.1.28]). For any ideal J ⊆ R,

AssR(R/J) = ass(J).

1.2. Reducing the problem. The strategy behind the proof of Theorem 1.4 is to focus
on the set of associated primes of the R-module Is/Is+1. We now explain why this is the
case.

The reduction of the problem comes from the fact that we have the following contain-
ments of sets.

Lemma 1.10. For any ideal I ⊆ R and any integers s ≥ 1, we have

AssR(Is/Is+1) ⊆ AssR(R/Is+1) ⊆ AssR(Is/Is+1) ∪ AssR(R/Is).

Proof. The proof of this fact exploits the natural short exact sequence

0 −→ Is/Is+1 −→ R/Is+1 −→ R/Is −→ 0.

We then know how the sets of associated primes behave on short exact sequences; for
example, see [43, Lemma 2.1.17]. �

Brodmann’s proof reduces to proving the following theorem.

Theorem 1.11. For any ideal I ⊆ R, there exists an integers s0 such that

AssR(Is/Is+1) = AssR(Is0/Is0+1) for all s ≥ s0.

Indeed, we can use the above statement to prove Brodmann’s result.

Proof. (of Theorem 1.4.) We want to show that there exists an integer s? such that for
all s ≥ s?,

ass(Is) = AssR(R/Is) = AssR(R/Is+1) = ass(Is+1).

By Theorem 1.11, there exists an integer s0 such that if s ≥ s0,

AssR(Is+1/Is+2) = AssR(Is/Is+1) ⊆ AssR(R/Is+1)

where the last containment follows from Lemma 1.10. Using this inclusion, and again
using Lemma 1.10, we have the following inclusions:

AssR(R/Is+2) ⊆ AssR(R/Is+1) ∪ AssR(Is+1/Is+2) ⊆ AssR(R/Is+1).

It then follows that for all t ≥ 1,

· · · ⊆ AssR(R/Is+t) ⊆ AssR(R/Is+t−1) ⊆ · · · ⊆ AssR(R/Is+1).

By Theorem 1.8 we know that |AssR(R/Is+1)| < ∞, so this sequence must eventually
stabilize. That is, there exists some s? ≥ s0 such that for all s ≥ s?, we have

AssR(R/Is
?

) = AssR(R/Is
?+1) = · · ·
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In other words, the sets ass(Is) stabilize for s ≥ s?. �

Remark 1.12. Note that the s0 of Theorem 1.11 is not necessarily the same s0 of Theorem
1.4. However, as we will see in the next lecture (see Lemma 2.6) that when I is a monomial
ideal, these values are the same.

1.3. Sketch of the missing details. What I have said so far seems to imply that Brod-
mann’s proof is not overly complicated. However, the “nitty-gritty” details of Theorem
1.4 are embedded in the proof of Theorem 1.11. I will now attempt to explain the main
steps one would use to prove Theorem 1.11.

The first step is to change the “point-of-view” again. Instead of viewing Is/Is+1 as an
R-module, you want to view it as an R/I-module. In particular, you need to show:

Lemma 1.13. Let I ⊆ R be an ideal and s a positive integer. Then

AssR(Is/Is+1) = AssR(Is+1/Is+2) if and only if AssR/I(I
s/Is+1) = AssR/I(I

s+1/Is+2).

Note that Lemma 1.13 implies that to prove Theorem 1.11, we need to prove the
statement for AssR/I(I

s/Is+1).

The second step is to work in a new ring constructed from I and R.

Definition 1.14. Given an ideal I in the ring R, the associated graded ring is the ring

GI(R) =
∞⊕
s=0

Is

Is+1
where I0 = R.

The ring GI(R) is a graded ring where the d-th graded piece is [GI(R)]d = Id/Id+1. In
particular, the 0-th graded piece is [GI(R)]0 = R/I. In this ring the multiplication of
homogeneous elements is defined by

Id/Id+1 × Ie/Ie+1 ×−→ Id+e/Id+e+1

(F + Id+1, G+ Ie+1) 7→ (FG+ Id+e+1).

Note that you need to verify that this map is well-defined, i.e., it is independent of your
coset representatives F and G.

The following result about GI(R) is then required.

Theorem 1.15 ([2, Proposition 10.22]). If R is a Noetherian ring, and I ⊆ R is an ideal,
then GI(R) is a Noetherian ring.

The third step is to relate the prime ideals that appear in AssR/I(I
s/Is+1) to the prime

ideals of the ring GI(R). The desired relationship is described in the next theorem.

Theorem 1.16. Let I ⊆ R be an ideal, and suppose that

P ∈
⋃
s≥0

AssR/I(I
s/Is+1).

Then there exists a prime ideal P? ⊆ GI(R) such that



PRAGMATIC LECTURES 7

(i) P? ∩ [GI(R)]0 = P? ∩ (R/I) = P.
(ii) P? ∈ AssGI(R)(GI(R)).

Theorem 1.16 then gives the following corollary.

Corollary 1.17. Let I ⊆ R be an ideal. Then∣∣∣∣∣⋃
s≥0

AssR/I(I
s/Is+1)

∣∣∣∣∣ <∞.
Proof. Theorem 1.16 (i) implies that each distinct prime P ∈

⋃
s≥0 AssR/I(I

s/Is+1) gives

rise to a distinct prime P?. So, if
∣∣⋃

s≥0 AssR/I(I
s/Is+1)

∣∣ = ∞, then Theorem 1.16
(ii) would imply that |AssGI(R)(GI(R))| = ∞. But because GI(R) is Noetherian by
Theorem 1.15, it follows from Theorem 1.8 that |AssGI(R)(GI(R))| < ∞, thus giving a
contradiction. �

There are two technical arguments that need to be made:

Lemma 1.18. For any ideal I ⊆ R, there exists an integer ` such that for all s ≥ `,

(0GI(R) :GI(R) [GI(R)]1) ∩ [GI(R)]s = (0GI(R)).

In other words, all the elements inGI(R) that annihilate the degree one piece [GI(R)]1 =
I/I2 have degree less than `. This lemma is then used to prove the next lemma.

Lemma 1.19. For any ideal I ⊆ R, there exists an integer ` such that for all s ≥ `,

AssR/I(I
s/Is+1) ⊆ AssR/I(I

s+1/Is+2).

Proof. (Sketch) The idea is to work in the ring GI(R), and then use Lemma 1.18 to justify
why a prime P ∈ AssR/I(I

s/Is+1) is also contained in AssR/I(I
s+1/Is+2). Lemma 1.18 is

used to construct the required annihilator. �

We can use these pieces to prove Theorem 1.11.

Proof. (of Theorem 1.11). By Lemma 1.13, it is enough to show that there exists an
integer s0 such that

AssR/I(I
s/Is+1) = AssR/I(I

s0/Is0+1) for all s ≥ s0.

It follows from Lemma 1.19 that there exists an integer ` such that

AssR/I(I
`/I`+1) ⊆ AssR/I(I

`+1/I`+2) ⊆ · · · ⊆
⋃
s≥0

AssR/I(I
s/Is+1).

But by Corollary 1.17
∣∣⋃

s≥0 AssR/I(I
s/Is+1)

∣∣ < ∞. We thus have a sequence of subsets
in a finite set, where the i-th set is contained in the i + 1-th set. So, there must exist
some s0 such that

AssR/I(I
s0/Is0+1) = AssR/I(I

s0+1/Is0+2) = · · ·
thus completing the proof. �
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1.4. Final comments. Brodmann’s Theorem (Theorem 1.4) is a good example of the
idea in commutative algebra that ideals behave “nicely” asymptotically (see also Tai’s
lectures on the powers of ideals and regularity for more on this idea).

Of course, Brodmann’s Theorem also inspires a number of natural questions (e.g., given
an ideal I, can we determine the value of s0). In the next lecture we will explore some of
these problems in the case the I is a monomial ideal.

We end with a very recent result of Hà, Nguyen, Trung, and Trung that shows if s < s0,
the sets ass(Is) need not be related to each other. Moreover, we can make examples where
s0 is arbitrarily large (although we may need to work in a very large polynomial ring!).

Theorem 1.20 ([23, Corollary 6.8]). Let Γ be any finite subset of N+. Then there exists
a monomial ideal I in a polynomial ring R such that

m ∈ ass(Is) if and only if s ∈ Γ.

Here, m is the unique maximal monomial ideal of R.

Remark 1.21. The above result answers an old question first raised by Ratliff [35].
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2. Lecture 2: The associated primes of powers of square-free monomial
ideals

In the last lecture, we looked at a result of Brodmann concerning the associated primes
of ideals. In particular, we worked through the proof of the following theorem:

Theorem 2.1 ([7]). Let I be any ideal in a Noetherian ring R. Then there exists an
integers s0 such that

ass(Is) = ass(Is0) for all s ≥ s0.

This theorem inspires a number of natural questions. To state these questions, we intro-
duce some suitable terminology.

Definition 2.2. The index of stability of an ideal I in a Noetherian ring R, denoted
astab(I), is defined to be

astab(I) := min{s0 | ass(Is) = ass(Is0) for all s ≥ s0}.

Definition 2.3. An ideal I in a Noetherian ring R is said to have the persistence property
if ass(I i) ⊆ ass(I i+1) for all i ≥ 1.

Brodmann’s result is the inspiration for the following questions:

Question 2.4. Let I be an ideal of a Noetherian ring R.

(i) What is astab(I)?
(ii) Does I have the persistence property?

(iii) What are the elements of ass(Is) with s ≥ astab(I)?

In general, these questions appear to be quite difficult. (Note that Theorem 1.20 implies
the existence of ideals that fail the persistence property.) In this lecture, we want to focus
on the case that I is a (square-free) monomial ideal in a polynomial ring R = k[x1, . . . , xn].
In this context, we have a much better understanding of the problems raised in Question
2.4.

2.1. General (useful) facts. As mentioned above, we are going to focus on the case of
monomial ideals. This restriction imposes restrictions on what primes can be associated
primes, and it gives us some information about the annihilator.

Lemma 2.5. Let I be any monomial ideal of R = k[x1, . . . , xn].

(i) If P ∈ ass(I), then P is also a monomial ideal. Consequently, P = 〈xi1 , . . . , xir〉
for some {xi1 , . . . , xir} ⊆ {x1, . . . , xn}.

(ii) If P ∈ ass(I), then there exists a monomial m ∈ R \ I such that I : 〈m〉 = P .

Proof. Statement (i) follows from the irreducible decomposition of monomial ideals (see,
e.g., [25, Chapter 1]). For (ii), since P ∈ ass(I), there exists an element f ∈ R such that
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I : 〈f〉 = P . If f is not a monomial, we can write it as f = c1m1 + · · ·+ csms with ci ∈ k
and mi a monomial. By (i), we know that P = 〈xi1 , . . . , xir〉. So, for any xj ∈ P ,

fxj = c1m1xj + · · · csmsxj ∈ I ⇒ mkxj ∈ I for each k ∈ {1, . . . , s}

since I is a monomial ideal. But this means that xj ∈ I : 〈mk〉 for all k ∈ {1, . . . , s}.
Since this is true for each xj ∈ P , we have

P ⊆
s⋂

i=1

I : 〈mi〉.

If g ∈
⋂s

i=1 I : 〈mi〉, then fg = c1m1g+ · · ·+csmsg ∈ I. This means that g ∈ I : 〈f〉 = P .

We have thus shown that P =
⋂s

i=1 I : 〈mi〉. But because a prime ideal is an irreducible
ideal, we must have P = I : 〈mi〉 for some i ∈ {1, . . . , s}. �

In Brodmann’s proof of the asymptotic stability of ass(Is), he used the stability of
AssR(Is/Is+1) to prove the stability of AssR(R/Is+1). In general, these sets are not equal.
However, in the case of monomial ideals, these sets are the same.

Lemma 2.6. For any monomial ideal I ⊆ R,

AssR(Is/Is+1) = AssR(R/Is+1) for all s ≥ 0.

Proof. As we observed in the last lecture, we always have AssR(Is/Is+1) ⊆ AssR(R/Is+1)
for any ideal in a Noetherian ring. It suffices to prove the reverse containment for mono-
mial ideals. Let P ∈ AssR(R/Is+1) = ass(Is+1). By Lemma 2.5 (i) and (ii) there exists a
monomial m ∈ R such that

P = 〈xi1 , . . . , xir〉 = Is+1 : 〈m〉 with m ∈ R \ Is+1.

So, for any xj ∈ P ,

mxj = m1 · · ·ms+1M ∈ Is+1

with mi a monomial generator of I and M a monomial. After relabeling, we can assume
that xj | (ms+1M). So, m1 · · ·ms | m, which implies that m ∈ Is.

We thus have m ∈ Is \ Is+1 and P = Is+1 : 〈m〉. But this is precisely the condition for
P ∈ AssR(Is/Is+1). �

Corollary 2.7. For a monomial ideal I ⊆ R = k[x0, . . . , xn],

astab(I) = min
{
s0
∣∣ AssR(Is/Is+1) = AssR(Is0/Is0+1) for all s ≥ s0

}
.

For any monomial ideal I, we let G(I) denote the unique set of minimal generators of
I. For any monomial m = xa11 · · ·xann , we define the support of m to be

supp(m) = {xi | ai > 0}.

We end this section with a useful localization “trick”. This theorem is useful because it
sometimes allows us to reduce to the case that P = 〈x1, . . . , xn〉 is the unique monomial
ideal that is also a maximal ideal.
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Theorem 2.8. Let I be a monomial ideal of R = k[x1, . . . , xn] with G(I) = 〈m1, . . . ,ms〉.
Then

P = 〈xi1 , . . . , xir〉 ∈ AssR(k[x1, . . . , xn]/Is)

if and only if

P = 〈xi1 , . . . , xir〉 ∈ AssS(k[xi1 , . . . , xir ]/(IP )s)

where IP = 〈m ∈ G(I) | supp(m) ⊆ {xi1 , . . . , xir}〉 and S = k[xi1 , . . . , xir ].

Proof. See [17, Lemma 2.11]. Note that this lemma is expressed in the language of hy-
pergraphs, but it is equivalent to the theorem given above. �

2.2. The index of stability. We now look at Question 2.4 (i) for monomial ideals. In
general, we know very little about astab(I) for monomial ideals. One of the few results
in this direction is the following result of Hoa:

Theorem 2.9 ([29]). Let I be a monomial ideal with n variables, s generators, and d the
largest degree of a minimal generator. Then

astab(I) ≤ max
{
d(ns+ s+ d))(

√
n)n+1(

√
2d)(n+1)(s−1), s(s+ n)4sn+2d2(2d2)s

2−s+1
}
.

Example 2.10. The bound of Theorem 2.9 is very far from optimal. For example,
for the ideal I = 〈x1x2, x2x3〉 ⊆ k[x1, x2, x3], Theorem 2.9 gives the bound astab(I) ≤
81, 920, 000, but astab(I) = 1.

It would be nice to have better uniform bounds for all square-free monomial ideals. In a
personal conversation with J. Herzog, he suggested that perhaps astab(I) ≤ n− 1, where
n is the number of variables of R. In all known cases, this bounds appears to hold.

If we restrict to some families of monomial ideals related to finite simple graphs, we can
significantly improve these bounds. We recall these constructions. We write G = (V,E)
to denote the finite simple graph with vertex set V = {x1, . . . , xn} and edge set E, i.e.,
E is a collection of subsets e ⊆ V with |e| = 2. We may sometimes write (V (G), E(G))
if we wish to highlight the vertex set and edge set of G. By identifying the vertices of V
with the variables of R = k[x1, . . . , xn], we can construct two monomial ideals.

Definition 2.11. The edge ideal of G is the ideal

I(G) = 〈xixj | {xi, xj} ∈ E〉

where the monomial generators correspond to the edges of G. The cover ideal of G is the
ideal

J(G) =
⋂

{xi,xj}∈E

〈xi, xj〉.

(The cover ideal name comes from the fact that the minimal generators correspond to the
minimal vertex covers of G.)
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To state our results about astab(I), we first recall some of the relevant definitions
from graph theory. The complement of G is the graph Gc = (V (Gc), E(Gc)) where
V (Gc) = V (G), but E(Gc) = {{xi, xj} ⊆ V (G) | {xi, xj} 6∈ E(G)}. In other words, it
is the graph consisting of the non-edges of G. The induced graph of G on W ⊆ V is the
graph

GW = (W,E(GW )) = {{xi, xj} ∈ E(G) | {xi, xj} ⊆ W}.
A cycle on n vertices, denoted Cn, is the graph

Cn = ({x1, . . . , xn}, {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {xn, x1}}).

A graph G is a perfect graph if both G and Gc have no induced cycles with n odd and
n ≥ 5.

A colouring of G is an assignment of colours to each vertex of G so that adjacent vertices
receive distinct colours. The chromatic number of G, denoted χ(G), is the minimum
number of colours needed in a colouring.

Example 2.12. We illustrate some of these ideas with an example. The graph G = C5

is given in the figure below. Then χ(G) = 3 since we can colour vertices x1, x3 RED,

x3

x2

x1

x5

x4

Figure 1. The five cycle graph

vertices x2, x4 BLUE, and x5 PURPLE. When we consider W = {x2, x3, x5}, the induced
graph GW = (C5)W is the the graph:

x3

x2x5

Figure 2. The induced graph (C5)W with W = {x2, x3, x5}

We can use the combinatorial information aboutG to place some bounds on astab(I(G))
and astab(J(G)).

Theorem 2.13. Let G be a finite simple graph.

(i) If G has no induced odd cycle, then astab(I(G)) = 1.
(ii) If the smallest induced odd cycle of G has size 2k + 1, then astab(I(G)) ≤ n− k.

(iii) If G is a perfect graph, then astab(J(G)) = χ(G)− 1.
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Proof. If G has no induced odd cycle, then G is said to be bipartite. Statement (i) then
follows from work of Simis, Vasconcelos, and Villarreal [37, Theorem 5.9]. Note that they
show that I = I(G) is normally torsion free, but this implies that Im = I(m) for all m ≥ 1.
One can then show that ass(Im) = rmass(I(m)) = ass(I) for all m ≥ 1. Statement (ii)
follows from a more general result of Chen, Morey, and Sung [8, Corollary 4.3]. For (iii),
see [17, Corollary 5.11]. �

2.3. Persistence of primes. We now turn to Question 2.4 (ii), i.e., when does a mono-
mial ideal have the persistence property. Persistence for monomial ideals fails in general.
We do, however, have the following necessary condition for persistence which is found in
Martinez-Bernal, Morey, and Villarreal [31].

Theorem 2.14. Suppose that I is a monomial ideal such that Ik+1 : I = Ik for all k ≥ 1.
Then I has the persistence property.

Proof. Let P ∈ ass(Ik). By Theorem 2.8, we can assume that P = 〈x1, . . . , xn〉; further-
more, it is enough to show that P persists.

Since P ∈ ass(Ik), there exists a monomial m ∈ R \ Ik such that Ik : 〈m〉 = P . Since
m ∈ R \ Ik, m 6∈ Ik = Ik+1 : I. So, there exists a monomial q ∈ I such that mq 6∈ Ik+1.
Now for each i = 1, . . . , n, the variable xi satisfies

(mq)xi ∈ (mxi)q ∈ IkI = Ik+1 because mxi ∈ Ik.

This implies that P ⊆ Ik+1 : 〈mq〉. Because mq 6∈ Ik+1, Ik+1 : 〈mq〉 ( 〈1〉, i.e., Ik+1 :
〈mq〉 is a proper monomial ideal of R, and in particular, it must be a subset of P . So
P = Ik+1 : 〈mq〉. But since mq ∈ R \ Ik+1, this implies that P ∈ ass(Ik+1). �

Martinez-Bernal, Morey, and Villarreal used the above result to show that all edge
ideals have the persistence properties. To prove the following theorem, they needed to
use a classical result about matchings in a graph. This result is a nice example of using
graph theory results to prove a result in commutative algebra.

Theorem 2.15 ([31, Corollary 2.17]). For any graph G, the edge ideal I(G) satisfies
I(G)k+1 : I(G) = I(G)k for all k ≥ 1. In particular, I(G) has the persistence property.

Remark 2.16. Herzog-Qureshi [26] called an ideal I Ratliff if Ik+1 : I = Ik for all k ≥ 1.
They show that if I is any ideal (not just a monomial ideal) that is Ratliff, then I has
the persistence property.

Example 2.17. Theorem 2.14 does not classify ideals with the persistence property. As
an example, consider the Stanley-Reisner ideal of the triangulation of the projective plane,
i.e.,

I = 〈x1x2x5, x1x3x4, x1x2x6, x1x3x6, x1x4x5, x2x3x4, x2x3x5, x2x4x6, x3x5x6, x4x5x6〉.

Then a computer algebra program can show that I2 : I = I, but I3 : I 6= I2, so I is not
Ratliff. However, I has the persistence property.
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Theorem 2.15 shows that all edge ideals have the persistence property. This leads to
the natural question of whether cover ideals have this property. For many large classes of
graphs, this is indeed the case.

Theorem 2.18 ([17]). If G is a perfect graph, then J(G) has the persistence property.

In fact, there are a number of graphsG that are not perfect, but J(G) has the persistence
property (e.g., the cover ideals of cycles). For a while, it was thought that cover ideals of
all graphs (and in fact, all square-free monomial ideals) satisfied the persistence property.
Francisco, Hà, and myself formulated a graph theory conjecture, that if true, would
have implied the persistence property (see [16]). Interestingly, T. Kaiser, M. Stehĺık, R.
Škrekovski [30], all graph theorists, disproved our graph theory conjecture. The example,
which is given below, is another nice example of the intersection between graph theory
and commutative algebra.

Example 2.19 ([30]). The cover ideal of the graph G in Figure 3 fails to have the

v0,0

v0,1

v0,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

Figure 3. A graph whose cover ideals fails the persistence property; illus-
tration source [30].

persistence property. In particular, the maximal ideal is an associated prime of J(G)3,
but it is not an associated prime of J(G)4. This graph G can be extended to an infinite
family of graphs that fail to have the persistence property. The details are worked out in
a paper of Hà and Sun [24].

One obvious open question is the following:

Question 2.20. Classify all finite simple graphs G whose cover ideal fails to have the
persistence property.

It should be noted that there are some other families of square-free monomial ideals
(that are neither edge ideals or cover ideals) that are known to satisfy the persistence
property. This includes polymatroidal ideals [27] and some generalized cover ideals [4].
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2.4. Elements of ass(Is). We now turn to the problem of determining the elements of
ass(Is), i.e., the focus of Question 2.4 (iii). We will focus on the on cover ideals of graphs,
although many of these ideals extend to all square-free monomial ideals using the language
of hypergrahps (see [16] for more details). Some of the material of this section can also
be found in [42].

The key idea that that you should take away is that if P = 〈xi1 , . . . , xir〉 ∈ ass(J(G)s),
then something “interesting” is happening on the induced graph GP , where we view P
as both an ideal generated by the variables and as a subset P ⊆ V (G). Specifically,
associated primes are related to colourings of the graph.

The following theorem, which is interesting in its own right, shows that the chromatic
number is related to powers of ideals.

Theorem 2.21 ([16]). For any graph G on n vertices,

χ(G) = min{d | (x1 · · ·xn)d−1 ∈ J(G)d}.

We now take a detour to explain the significance of the name cover ideal.

Definition 2.22. A subset W ⊆ V (G) is a vertex cover if W ∩ e 6= ∅ for all e ∈ E(G). A
vertex cover W is a minimal vertex cover if no proper subset of W is a vertex cover.

Lemma 2.23. Let G be a graph with cover ideal J(G). Then

J(G) = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉

where xW :=
∏

xi∈W xi if W ⊆ V (G).

Proof. Let L = 〈xW | W ⊆ V (G) is a minimal vertex cover of G〉.
Let xW be a generator of L with W a minimal vertex cover. Then, for every edge

e = {xi, xj} ∈ E(G), we have W ∩ e 6= ∅. So, either xi ∈ W or xj ∈ W . Consequently,
either xi|xW or xj|xW , whence xW ∈ 〈xi, xj〉. Since e is arbitrary, we have

xW ∈
⋂

{xi,xj}∈E(G)

〈xi, xj〉 = J(G).

Conversely, let m ∈ J(G) be any minimal generator. Note that m must be square-
free since J(G) is the intersection of finitely many square-free monomial ideals. So m =
xi1 · · ·xir . Let W = {xi1 , . . . , xir}. Since m ∈ 〈xi, xj〉 for each each {xi, xj} ∈ E(G).
either xi|m or xj|m, and thus, xi ∈ W or xj ∈ W . Thus W is a vertex cover. Let
W ′ ⊆ W be a minimal vertex cover. Because xW ′ ∈ L and xW ′ divides m = xW , we have
m ∈ L. �

We need to recall some graph theory.

Definition 2.24. A graph G is critically s-chromatic if χ(G) = s, and for every x ∈ V (G),
χ(G \ {x}) < s.
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Example 2.25. Let G = Cn be the n-cycle with n odd. Then G is a critically 3-chromatic
graph since χ(G) = 3, but if we remove any vertex x, χ(G \ {x}) = 2.

Example 2.26. Let G = Kn be the clique of size n. Then G is a critically n-chromatic
graph since χ(G) = n, but if we remove any vertex x, G \ {x} = Kn−1, and thus χ(G \
{x}) = n− 1.

Remark 2.27. You should be able to convince yourself that the only critically 1-chromatic
graph is the graph of an isolated vertex, and the only critically 2-chromatic graph is K2.
The only critically 3-chromatic graphs are precisely the graphs G = Cn with n odd.
However, for s ≥ 4, there is no known classification of critically s-chromatic graphs.

As the next theorem shows, some of the associated primes of J(G)s are actually detect-
ing induced subgraphs that are critically (s+ 1)-chromatic.

Theorem 2.28. Let G be a graph and suppose P ⊆ V (G) is such that GP is critically
(s+ 1)-chromatic. Then

(1) P 6∈ ass(J(G)d) for 1 ≤ d < s.
(2) P ∈ ass(J(G)s).

Proof. By Lemma 2.8, we can assume that G = GP . We will only prove (2). To prove
(1), one shows that if P ∈ ass(J(G)d) with d < s, then we would be able to show that
χ(GP ) < s+ 1, a contradiction.

We are given
χ(G) = min{d |(x1 · · ·xn)d−1 ∈ J(G)d} = s+ 1

so m = (x1 · · ·xn)s−1 6∈ J(G)s. In other words, we have, J(G)s : 〈m〉 ( 〈1〉, and hence
J(G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉. We will now show that J(G)s : 〈m〉 ⊇ 〈x1, . . . , xn〉; the
conclusion will then follow from this fact.

Since χ(G) is critically (s+ 1)-chromatic, for each xi ∈ V (G), χ(G \ {xi}) = s. Let

V (G \ {xi}) = C1 ∪ · · · ∪ Cs

be the s colouring of V (G \ {xi}) where Ci denotes all the vertices coloured i. Then

V (G) = C1 ∪ · · · ∪ Cs ∪ {xi}
is an (s+ 1)-colouring of G.

For j = 1, . . . , s, set

Wj = C1 ∪ · · · ∪ Ĉj ∪ · · · ∪ Cs ∪ {xi}.
Each Wj is a vertex cover, so xWj

∈ J(G). Thus

s∏
j=1

xWj
∈ J(G)s.

But
∏s

j=1 xWj
= (x1 · · · xn)s−1xi. Thus, xi ∈ J(G)s : 〈m〉. This is true for each xi ∈ V (G),

whence 〈x1, . . . , xn〉 ⊆ J(G)s : 〈m〉 ⊆ 〈x1, . . . , xn〉, as desired. �
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Example 2.29. We consider the following graph

x3

x2

x1

x5

x4

x6

Note that the induced graph on {x1, x2, x6} is a K3 (and C3), a critically 3-chromatic
graph. So P = 〈x1, x2, x6〉 is in Ass(J(G)2), but not in Ass(J(G)). Similarly, since the
induced graph on {x1, x2, x3, x4, x5} is a C5, we will have 〈x1, x2, x3, x4, x5〉 ∈ Ass(J(G)2).

When s = 2, we can find a converse of Theorem 2.28. A complete characterization of
the associated primes of J(G)2 was first given in the paper [18].

Theorem 2.30. For any graph G, P ∈ ass(J(G)2) if and only if

(i) P = 〈xi, xj〉 and {xi, xj} ∈ E(G), and
(ii) P = 〈xi1 , . . . , xir〉 where r is odd and GP = Cr, an odd cycle.

Unfortunately, the converse of Theorem 2.28 is false in general; that is, if P ∈ ass(J(G)s),
but P 6∈ ass(J(G)d) with 1 ≤ d < s, then the graph GP is not necessarily a critically
(s+ 1)-chromatic graph.

Example 2.31. If we consider the graph of Example 2.29, then P = 〈x1, x2, x3, x4, x5, x6〉 ∈
ass(J(G)3) but not in ass(J(G)) or ass(J(G)2). However, the graph G = GP is not criti-
cally 4-chromatic. In fact, χ(G) = 3.

What is happening here is that we are looking in the “wrong” graph.

Definition 2.32. Given a graph G = (V (G), E(G)) and integer s ≥ 1, the s-th expansion
of G, denoted Gs, is the graph constructed from G as follows: (a) replace each xi ∈ V (G)
with a clique of size s on the vertices {xi,1, . . . , xi,s}, and (b) two vertices xi,a and xj,b are
adjacent in Gs if and only if xi and xj were adjacent in G.

Example 2.33. We illustrate this example when G = C4, and we construct G2. Recall
that C4 is the graph:

x3

x2x1

x3
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Then the second expansion of G is the graph:

x3,1

x2,1x1,1

x4,1

x4,2 x3,2

x2,2x1,2

We now come to our main result which gives a combinatorial interpretation for the
elements of ass(J(G)s).

Theorem 2.34 ([16]). Let G be a graph with cover ideal J(G). Then 〈xi1 , . . . , xir〉 ∈
ass(J(G)s) if and only if there exists a set T ⊆ V (Gs) with

{xi1,1, xi2,1, . . . , xir,1} ⊆ T ⊆ {xi1,1, . . . , xi1,s, . . . , xir,1, . . . , xir,s}
such that the induced graph (Gs)T is a critically (s+ 1)-chromatic graph.

The proof is a mixture of a number of ingredients. First, instead of looking at the
primary decomposition, one considers the irreducible decomposition of J(G)s. Then one
uses tools such as generalized Alexander duality, polarization and depolarization of mono-
mial ideals, and a result of Sturmfels and Sullivant [39]. We have only stated it for cover
ideals of graphs, but it works also for cover ideals of hypergraphs, i.e., any square-free
monomial ideal.

Example 2.35. Let us return to Example 2.29 and explain why 〈x1, x2, x3, x4, x5, x6〉
appears in ass(J(G)3). We form G3, the 3-rd expansion of G. If we consider the induced
subgraph on T = {x1,1, x2,1, x3,1, x4,1, x5,1, x5,2, x6,1} ⊆ V (G3), we find the graph

x3,1

x2,1

x1,1

x5,1

x4,1

x6,1x5,2

You can now convince yourself that this graph is critically 4-chromatic. Consequently,
〈x1, x2, x3, x4, x5, x6〉 ∈ ass(J(G)3).

Remark 2.36. In my work with Francisco and Hà on the associated primes of Is when
I is a square-free monomial ideal, we took the point of view that I was the cover ideal
of a hypergraph, and consequently, the generators correspond to minimal vertex covers.
Hien, Lam, and Trung [28] took an alternative point-of-view. They viewed the generators
of I as the edges of a (hyper)graph, and described the associated primes in terms of this
(hyper)graph.
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Remark 2.37. Bayati, Herzog, and Rinaldo [3] have shown that for any monomial ideal
I, there is an algorithm to find all the primes in ass(Iastab(I)) using Koszul homology.

We end with a question that computer experiments have suggested that is true.

Question 2.38. Let I be any square-free monomial ideal. If P ∈ ass(I2), is P ∈ ass(Is)
for all s ≥ 2?
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3. Lecture 3: The Waldschmidt constant of square-free monomial ideal

In this lecture we will introduce the Waldschmidt constant of a homogeneous ideal.
The main result of this lecture is to explain how to compute this invariant in the case of
square-free monomial ideals. In the case of edge ideals, I will also give a combinatorial
interpretation of this invariant. In this lecture, R = k[x1, . . . , xn] is a polynomial ring
over a field k, where k has characteristic zero and is algebraically closed. All ideals I ⊆ R
will be assumed to be homogeneous. Furthermore, we set

α(I) = min{i | exist 0 6= F ∈ I with degF = i}.

That is, α(I) is the smallest degree of a minimal generator of I.

3.1. Origin story: points in P2. Before defining the Waldschmidt constant, we de-
scribe some of the historical background that led to the development of this constant. In
particular, we start our lecture by discussing points in the projective plane.

Recall that

P2 = P2
k := {[a : b : c] | (a, b, c) ∈ k3, (a, b, c) 6= (0, 0, 0)}/ ∼

where ∼ denotes the equivalence relation defined by

[a : b : c] ∼ [d : e : f ] if and only if (a, b, c) = (λd, λe, λf) for some 0 6= λ ∈ k.

Via the Algebra-Geometry Dictionary (see, for example, Chapter 4 of [12]) there is a
correspondence between homogeneous ideals of R = k[x0, x1, x2] and varieties of P2.

We are only interested in the case of points, which we recall here. For any point
P = [a : b : c] ∈ P2, the homogeneous ideal associated with P is the ideal

I(P ) = {F ∈ R | F homogeneous and F (P ) = 0}.

Given any finite set of points X = {P1, . . . , Ps} ⊆ P2, the homogeneous ideal associated
with X is the ideal

IX = I(P1) ∩ · · · ∩ I(Ps)

= {F ∈ R | F homogeneous and F (P ) = 0 for all P ∈ X}.

For a finite set of points X, we then have

α(IX) = min{i | 0 6= F ∈ (IX)i}
= the smallest degree of a curve that passes through all points of X.

The following questions is then of interest:

Question 3.1. Let X = {P1, . . . , Ps} ⊆ P2 and fix an integer m ≥ 1. What is the smallest
degree of a curve that passes through all the points of X with multiplicity m?

One way to answer this question is to use the m-th differential power. We recall this
definition for R = k[x0, x1, x2], although this definition generalizes in the natural way (see
[40]).
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Definition 3.2. Let I be a homogeneous ideal of R = k[x0, x1, x2] and m ≥ 1 an integer.
The m-th differential power of I is the ideal

I〈m〉 =

〈
F ∈ R

∣∣∣∣ ∂a0+a1+a2F

∂xa00 ∂x
a1
1 ∂x

a2
2

∈ I with a0 + a1 + a2 ≤ m− 1

〉
.

In other words, I〈m〉 contains all the homogeneous elements whose partial derivatives of
order ≤ m− 1 are all contained in I.

Using this language, an answer to Question 3.1 is straightforward. Namely, if X =
{P1, . . . , Ps} ⊆ P2 and m ≥ 1 is an integer, then

α((IX)〈m〉) = the smallest degree of a curve that passes all points

of X with multiplicity m.

Before moving forward, let’s take a break to do a example which illustrates some of
these ideas.

Example 3.3. Consider the three coordinate points of P2, that is,

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0] , and P3 = [0 : 0 : 1].

The associated ideals are

I(P1) = 〈x1, x2〉, I(P2) = 〈x0, x2〉 and I(P3) = 〈x0, x1〉

and thus

IX = 〈x0x1, x0x2, x1x2〉.

Since IX is a monomial ideal, to compute I
〈2〉
X , it is enough to check which monomials

belong to this ideal. The minimal generators can be shown to be

I
〈2〉
X = 〈x0x1x2, x20x21, x20x22, x21x22〉.

So, we have α(IX) = 2 and α(I
〈2〉
X ) = 3. Note that x0x1x2 is a curve of degree three that

passes through each point of X with multiplicity two.

Remark 3.4. We want to stress that although we are only presenting the case of points
in P2, everything we have said can be extended to the case of points in Pn.

As we have seen, to answer Question 3.1, we need to be able to determine α(I
〈m〉
X ).

Although we have poised this problem as a question about algebraic geometry and com-

mutative algebra, the question about finding α(I
〈m〉
X ) first arose in complex analysis. In

particular, this problem was studied in the 1970’s and 1980’s by by Waldschmidt [44, 45],
Skoda [38], Chudnovsky [9], Esnault and Viehweig [15], among others.

Before moving to our discussion of the Waldschmidt constant, we mention two impor-

tant conjectures related to α(I
〈m〉
X ).
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Conjecture 3.5 (Chudnovsky [9]). For any set of points X ⊆ Pn,

α(I
〈m〉
X )

m
≥ α(IX) + n− 1

n
.

Chudnovsky was able to verify his conjecture in the case that n = 2. In 2012, Dumnicki
[13] verified the conjecture for n = 3. More recently, Foulli, Mantero, and Xie [19] were
able to verify the conjecture for large classes of points in Pn (this last reference contains
a more complete list of other known cases).

The following conjecture of Nagata dates back to the 1950’s, and so predates all the
other work we have mentioned. The conjecture, which arose in Nagata’s solution to
Hilbert’s 14-th problem, continues to provide motivation to study Question 3.1.

Conjecture 3.6 (Nagata [33]). Let X ⊆ P2 be a general set of s points. Then

α(I
〈m〉
X )

m
≥
√
s.

3.2. Symbolic powers and the Waldschmidt constant. We now wish to make the
connection to symbolic powers and introduce the Waldschmidt constant. We first recall
the definition of a symbolic power of an ideal (but only in a special case).

Definition 3.7. Let I be a homogeneous radical ideal in R, i.e., I =
√
I and thus

I = P1 ∩ · · · ∩ Ps with all Pi prime. Then the m-th symbolic power of I is the ideal

I(m) =
⋂

P∈{P1,...,Ps}

(ImRP ∩R)

where ImRP denotes the ideal in Im in the ring RP , i.e., the ring R localized at P .

The m-th symbolic power and the m-th differential power are then related, as first
shown by Nagata and Zariski.

Theorem 3.8 (Nagata-Zariski). If I ⊆ k[x0, . . . , xn] is a homogeneous radical ideal with
I 6= 〈x0, . . . , xn〉 (so I = I(V ) for some variety V ⊆ Pn), then

I(m) = I〈m〉 for all integers m ≥ 1.

Note that the Nagata-Zariski theorem implies that the questions introduced in the last
section can be translated into questions about the m-symbolic power of an ideal.

We now introduce the invariant of interest:

Definition 3.9. Let I be a homogeneous radical ideal of R. The Waldschmidt constant
of I is

α̂(I) := lim
m→∞

α(I(m))

m
.
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Remark 3.10. The Waldschmidt constant α̂(I) was first introduced by Bocci and Har-
bourne [6]. They proved that this limit exists. This invariant was introduced in order to
study the containment problem1 of ideals, i.e., for a fixed r, what is the smallest integer
m such that I(m) ⊆ Ir.

3.3. The square-free monomial case. In general, computing the Waldschmidt con-
stant of an ideal is quite difficult. Indeed, both Chudnosky’s Conjecture and Nagata’s
Conjecture (Conjectures 3.5 and 3.6) can be restated as conjectures about the Wald-
schmidt constant about the ideal of a set of points. However, when I is a square-free
monomial ideal, [5] showed that there is a procedure to compute α̂(I). We will describe
this procedure.

Recall that we call a monomial ideal I a square-free monomial ideal if it is generated
by square-free monomials. That is, each generator of I has the form m = xa11 · · ·xann
with ai ∈ {0, 1} for all i. The following theorem summarizes some of the nice features of
square-free monomial ideals.

Theorem 3.11. Let I be a square-free monomial ideal in R = k[x1, . . . , xn].

(i) There exists unique prime ideals of the form Pi = 〈xi,1, . . . , xi,ti〉 such that I =
P1 ∩ · · · ∩ Ps.

(ii) With the Pi’s as above, the m-th symbolic power of I is given by I(m) = Pm
1 ∩ · · ·∩

Pm
s .

(iii) For all integers m ≥ 1,

α(I(m)) = min{a1 + · · ·+ an | xa11 · · ·xann ∈ I(m)}.

Proof. Statement (i) follows from the theory of primary decomposition of monomial ideals
(see Chapter 1 of [25]). Statement (ii) is a special case of [10, Theorem 3.7]. Statement
(iii) follows directly from the definition of α(−) and a monomial ideal. �

Example 3.12. We consider the following square-free monomial ideal which we will use
as our running example. In particular, we look at

I = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉 ⊆ k[x1, . . . , x5].

This ideal has the following primary decomposition

I = 〈x1, x3, x4〉 ∩ 〈x2, x4, x5〉 ∩ 〈x3, x5, x1〉 ∩ 〈x4, x1, x2〉 ∩ 〈x5, x2, x3〉.

The next result enables us to determine if a particular monomial belongs to I(m).

Lemma 3.13. Let I ⊆ R be a square-free monomial ideal with minimal primary de-
composition I = P1 ∩ P2 ∩ · · · ∩ Ps with Pi = 〈xi,1, . . . , xi,ti〉 for i = 1, . . . , s. Then
xa11 · · · xann ∈ I(m) if and only if ai,1 + · · ·+ ai,ti ≥ m for i = 1, . . . , s.

Proof. See [5, Lemma 2.6]. �

1See Brian Harbourne’s lectures
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The above lemma is the key observation that is needed in order to determine the
Waldschmidt constant of square-free monomial ideals. To make this more precise, let’s
return to our running example.

Example 3.14. Let I be as in Example 3.12. To determine if xa11 x
a2
2 x

a3
3 x

a4
4 x

a5
5 ∈ I(m),

Lemma 3.13 says we need to find integers a1, . . . , a5 that satisfies the following inequalities

a1 + a3 + a4 ≥ m

a2 + a4 + a5 ≥ m

a3 + a5 + a1 ≥ m

a4 + a1 + a2 ≥ m

a5 + a2 + a3 ≥ m.

If we also want to find α(I(m)), we also need to find the tuple (a1, a2, a3, a4, a5) that not
only satisfies the above inequalities, but also minimizes a1 +a2 +a3 +a4 +a5 (by Theorem
3.11).

Stepping back for a moment, notice in the above example, we have described the com-
putation of α(I(m)) as a solution to linear program. This idea can be extended to all
square-free monomial ideals.

In particular, given a primary decomposition of our square-free monomial ideal I =
P1 ∩ · · · ∩ Ps, we define an s× n matrix A where

Ai,j =

{
1 if xj ∈ Pi

0 if xj 6∈ Pi

.

We then define our linear program (LP) constructed from I as follows:

minimize 1Ty
subject to Ay ≥ 1 and y ≥ 0.

Here yT =
[
y1 · · · yn

]
, and 1, respectively 0, is an appropriate sized vector of 1’s,

respectively 0’s.

Example 3.15. Continuing with our running example, the ideal I of Example 3.12 gives
us the following LP:

minimize 1Ty = y1 + y2 + y3 + y4 + y5

subject to


1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1



y1
y2
y3
y4
y5

 ≥


1
1
1
1
1

 and


y1
y2
y3
y4
y5

 ≥


0
0
0
0
0

.

We now come to our theorem which relates this idea of a LP to the Waldschmidt
constant.
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Theorem 3.16 ([5, Theorem 3.2]). Let I ⊆ R be a square-free monomial ideal with
minimal primary decomposition I = P1 ∩ P2 ∩ · · · ∩ Ps with Pi = 〈xi,1, . . . , xi,ti〉 for
i = 1, . . . , s. Let A be the s× n matrix where

Ai,j =

{
1 if xj ∈ Pi

0 if xj 6∈ Pi.

Consider the following LP:

minimize 1Ty
subject to Ay ≥ 1 and y ≥ 0

and suppose that y∗ is a feasible solution (i.e., y∗ is a vector that satisfies the LP) that
realizes the optimal value. Then

α̂(I) = 1Ty∗.

That is, α̂(I) is the optimal value of the LP.

Remark 3.17. Because the Waldschmidt constant of a square-free monomial ideal can
be formulated in terms of a LP, it can be solved by using the simplex method developed
by Dantzig in the 1940’s. There are a number of online calculators that will allow you to
solve a LP. Here is one example:

http://comnuan.com/cmnn03/cmnn03004/

Remark 3.18. Note that to set up the LP to find the Waldschmidt constant of a square-
free monomial ideal, we only need to know information about the primary decomposition
of the monomial ideal I.

Example 3.19. For the LP in Example 3.15, the feasible solution that gives the optimal
value is

yT =
[
1
3

1
3

1
3

1
3

1
3

]
.

Consequently,

α̂(I) =
1

3
+ · · ·+ 1

3
=

5

3
.

By rephrasing the Waldschmidt constant as a solution as a LP, one can prove a
Chudnovsky-like result (i.e., a result similar to the statement of Conjecture 3.5).

Theorem 3.20. Let I be a square-free monomial ideal and e = bight(I) = max{ht(Pi) | I =
P1 ∩ · · · ∩ Ps}. Then

α̂(I) ≥ α(I) + e− 1

e

Remark 3.21. For an ideal of points IX, bight(IX) = n. The above inequality was
conjectured to be true for all monomial ideals in [10].
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3.4. Connection to graph theory. To wrap up this lecture, I want to make a connec-
tion between the Waldschmidt constant and graph theory. Recall that we use G = (V,E)
to denote a finite simple graph on the vertex set V = {x1, . . . , xn} with edge set E. By
identifying the vertices of G with the variables of R = k[x1, . . . , xn], we can define the
edge ideal of G. Specifically,

I(G) = 〈xixj | {xi, xj} ∈ E〉.

Example 3.22. Let G = (V,E) be the graph with vertex set V = {x1, . . . , x5} and edge
set E = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x1}}. The graph G is an example of a
cycle (specifically, the five cycle) because we can represent it pictorially as in Figure 4.
The edge ideal of this graph is then I(G) = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉. This ideal is the

x3

x2

x1

x5

x4

Figure 4. The five cycle graph

same ideal as our running example (Example 3.12) in the previous section.

We now introduce a notion that generalizes the idea of a colouring of a graph.

Definition 3.23. Let G be a graph. A b-fold colouring of G is an assignment of b colours
to each vertex so that adjacent vertices receive different colours. The b-fold chromatic
number of G, denoted χb(G), is the minimal number of colours needed to give G a b-fold
colouring.

Example 3.24. Consider the graph G of Example 3.22. The 2-fold chromatic number
of this graph G is χ2(G) = 5 since the graph can be coloured as in Figure 5. Here, R is

(R,B)

(G,O)

(P,R)

(B,G)

(O,P )

Figure 5. A 2-fold colouring of the five cycle graph

RED, B is BLUE, G is GREEN, O is ORANGE, and P is PURPLE.

The b-fold chromatic number allows us to define a new invariant of a graph.
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Definition 3.25. The fractional chromatic number of G, denoted χf (G), is defined to be

χf (G) := lim
b→∞

χb(G)

b
.

We can now connect the Waldschmidt constant to the fractional chromatic number.

Theorem 3.26. Let G be a finite simple graph with edge ideal I(G). Then

α̂(I(G)) =
χf (G)

χf (G)− 1
.

Proof. (Sketch of main idea.) It is known that the fractional chromatic number of a graph
can also be expressed as a solution to a LP (see, for example, the nice book [36]). Then
one relates to this LP with the LP of Theorem 3.16. �

Remark 3.27. Although we have only stated the above result for edge ideals, the result
holds more general for all square-free monomial graphs. The appropriate combinato-
rial object is a hypergraph. The Waldschmidt constant is then related to the fractional
chromatic number of the hypergraph.

Example 3.28. In Example 3.19, we showed that α̂(I(C5)) = 5
3
. By Theorem 3.26, we

have
5

3
=

χf (C5)

χf (C5)− 1
⇒ χf (C5) =

5

2
.

This agrees with [36, Proposition 3.1.2].

Remark 3.29. Besides the Waldschmidt constant, the fractional chromatic number has
also appeared in connection to the problems mentioned in the last two lectures. In par-
ticular, Francisco, Hà, and myself [16] used some conditions on the fractional chromatic
number to show that a particular prime was an associated prime of a power of a cover
ideal.

We have only focused on the case of square-free monomial ideals. The natural next
step is still open:

Question 3.30. Is there a similar procedure to find α̂(I) for nonsquare-free monomial
ideals?
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4. Lecture 4: Comparing I(m) and Im: the symbolic defect

The purpose of this lecture is to introduce the symbolic defect of a homogeneous ideal.
This concept was introduced relatively recently by Galetto, Geramita, Shin, and my-
self [20]. There are a number of interesting questions one can ask about this invariant,
and hopefully this lecture will inspire you to investigate the symbolic defect of your
favourite family of homogeneous ideals. Throughout this lecture, we will assume that
R = k[x1, . . . , xn] is polynomial ring over an algebraically closed field of characteristic
zero, and I will be a homogeneous ideal of R.

4.1. Introducing the symbolic defect. We begin this lecture with some observations.
For any homogeneous ideal I, we always have Im ⊆ I(m). As a consequence the R-module
I(m)/Im is well-defined. The main idea behind the symbolic defect of an ideal is that
I(m)/Im is somehow a measure of the “failure” of Im to equal I(m). That is, the “bigger”
the module I(m)/Im, the more Im fails to equal I(m). This suggests we may wish to study
the module I(m)/Im in more detail. Beside my own paper, I only know of the paper2 of
Arsie and Vatne [1] that has looked at this module.

But what do we mean by “bigger”? Note that when I is a homogeneous ideal, the
R-module I(m)/Im is also a graded R-module (and also an R/Im-module). Furthermore,
since R is Noetherian, the module I(m)/Im is Noetherian. Consequently, the quotient
I(m)/Im is a finitely generated graded R-module, and furthermore, the number of minimal
generators is an invariant of I(m)/Im. So, one way to measure “bigger” is determine the
number of minimal generators of I(m)/Im.

For any R-module M , let µ(M) denote the number of minimal generators of M . We
can then define the symbolic defect of an ideal.

Definition 4.1. Let I be a homogeneous ideal of R, and m ≥ 1 any positive integer. The
m-th symbolic defect of I, is

sdefect(I,m) := µ
(
I(m)/Im

)
.

The symbolic defect sequence of I is the sequence

{sdefect(I,m)}m∈N .

Note that it follows directly from the definition that sdefect(I,m) = 0 if and only if
I(m) = Im. From this point-of-view, it makes sense to view sdefect(I,m) as measuring
the failure of Im to equal I(m). Before going further, let’s work out an example.

Example 4.2. We consider the monomial ideal3

I = 〈xy, xz, yz〉 ⊆ R = k[x, y, z].

2A previous PRAGMATIC project!
3This is the third time we have used this ideal; it is a useful example.
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Using either a computer algebra system, or computing by hand, we can show

I2 = 〈x2y2, x2y, z, xy2z, x2z2, xyz2, y2z2〉
I(2) = 〈xyz, x2y2, x2z2, y2z2〉.

Thus

I(2)/I2 =
〈
xyz + I2, x2y2 + I2, x2z2 + I2, y2z2 + I2

〉
=

〈
xyz + I2

〉
⊆ R/I2

So, sdefect(I, 2) = 1.

We would like to make one other remark about this module since we will return to it
at the end of the lecture. Note that the module I(2)/I2 is a graded R-module. We can
actually compute the dimension of each graded piece. In particular, we have

dimk

[
I(2)/I2

]
t

=


0 if 0 ≤ t < 3

1 if t = 3

0 if t > 3.

To see why, note that if t < 3, then [I(2)]t = (0), so the first case follows. As we observed
above, I(2)/I2 has exactly one generator of degree 3. This gives the result for t = 3. For
t > 4, we claim that [I(2)]t = [I2]t. We only need to check that [I(2)]t ⊆ [I2]t since I2 ⊆ I(2)

takes care of the other inclusion. Take any monomial m of degree t in [I(2)]t. Since I(2) is
a monomial ideal, m is divisible by one of {xyz, x2y2, x2z2, y2z2}. If m is divisible by one
of x2y2, x2z2, or y2z2, then it must also be I2 since these are generators of I2. Suppose
that m is divisible by xyz. Since m has degree t ≥ 4, there must also be another variable
that divides m. But that means that one of x2yz, xy2z, or xyz2 must divide m. So, m is
in I2, as desired.

Now that we have defined the symbolic defect, a number of natural questions arise:

Question 4.3. Let I be a homogeneous ideal of R = k[x1, . . . , xn].

(i) How can we compute sdefect(I,m)?
(ii) When is sdefect(I,m) = 1? (In this case, I(m) is “almost” Im since I(m) =
〈F 〉+ Im for some homogeneous form F .)

(iii) Are there any application of sdefect(I,m)?
(iv) Are there any connects to the containment problem?
(v) What can one say about the symbolic defect sequence?

In this lecture, I will touch upon (i)− (iv) in Question 4.3. I actually know very little
about Question 4.3 (v).

4.2. Some basic properties. We quickly describe some basic properties that will be
useful for our future discussion.
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If sdefect(I,m) = s, then there exists s homogeneous forms F1, . . . , Fs ∈ I(m) such that

I(m)/Im = 〈F1 + Im, . . . , Fs + Im〉 .

Note that this implies that

I(m) = 〈F1, . . . , Fs〉+ Im.

It is important to note that the Fi’s are not unique. In particular, one can use other coset
representatives. That is, for each i = 1, . . . , s, let Gi be a form such that Gi+I

m = Fi+I
m.

Then

I(m)/Im = 〈G1 + Im, . . . , Gs + Im〉
and also I(m) = 〈G1, . . . , Gs〉+ Im. Note, however, that it might be the case that

〈F1, . . . , Fs〉 6= 〈G1, . . . , Gs〉.

The only thing that is the same is the number of generators. We make this concrete in
the next example:

Example 4.4. Let I be as in Example 4.2. Then

I(2)/I2 = 〈xyz + I2〉 = 〈xyz + x2y2 + I2〉

but 〈xyz〉 6= 〈xyz + x2y2〉.

The following result summarizes some useful results of sdefect(I,m).

Theorem 4.5. For all homogeneous radical ideals I,

(i) sdefect(I, 1) = 0.
(ii) if I is a complete intersection, sdefect(I,m) = 0 for all m ≥ 1.

(iii) if X ⊆ P2, and if X is not a complete intersection, then sdefect(I,m) 6= 0 for all
m ≥ 2.

Proof. Statement (i) follows from the fact that I(1) = I1. For (ii), this follows from a
classical result of Zariski-Samuel [46] that I(m) = Im for all m ≥ 1 when I defines a
complete intersection. For (iii), see [11, Remark 2.12(i)]. �

4.3. Computing sdefect(I,m). In general, I do not know of any algorithm to compute
sdefect(I,m) efficiently4. However, one can use the following strategy to compute this
value:

Strategy 4.6 (Computing sdefect(I,m)). Let I be a homogeneous ideal of R.

(a) Find an ideal J such that I(m) = J + Im.
(b) Show that all the minimal generators of J are required.
(c) sdefect(I,m) = µ(J).

4This might be a good research problem
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Note that if one only carries out (a), you can only shown that sdefect(I,m) ≤ µ(J). In
[20], we used Strategy 4.6 to find sdefect(I, 2) when I is a star configuration. Interestingly,
the ideal J that we needed for (a) turned out to be a star configuration as well. Without
further ado, here is the definition of a star configuration.

Definition 4.7. Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s}. Let L =
{L1, . . . , Ls} be a set of s linear homogeneous polynomials in k[x0, . . . , xn] such that all
subsets of L of size c+ 1 are complete intersections. Set

Ic,L =
⋃

1≤i1<i2<···<ic≤s

〈Li1 , . . . , Lic〉.

The vanishing locus of Ic,L, i.e., V (Ic,L) ⊆ Pn, is a linear star configuration.

Remark 4.8. In the above definition, we have required all the elements of L to be linear
forms. One can drop this requirement, and still define a star configuration. To simplify
our discussion, we will only focus on the linear case. See [20, Definition 3.1]. For further
details on star configurations, see [21] and [22].

Example 4.9. The name “star configuration” was suggested by A.V. Geramita. It was
inspired by picture in the case that n = 2, s = 5, and c = 2. In this case, we take five
linear forms in k[x0, x1, x2], say L = {L1, . . . , L5}. The fact that any three linear forms of
L is a complete intersection is equivalent to the fact that no three of the associated lines
meet at the same point. In this case, the star configuration V (I2,L) ⊆ P2 is the 10 =

(
5
2

)
points of intersections of these five lines. When we draw the five lines, as in Figure 6, we
see that they make a “star” shape. Classically, linear star-configurations were sometimes

L1

L2

L3 L4

L5

Figure 6. The linear star configuration of 10 points in P2

called `-laterals (see, for example, [13]).

Example 4.10. Example 4.2 is also an example of a star configuration. In this case,
n = 2, s = 3, and c = 2, and the linear forms are L = {x, y, z} in R = k[x, y, z].

We now describe some properties of the defining ideals of star configurations.
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Lemma 4.11. Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let L =
{L1, . . . , Ls} be s linear forms in R = k[x0, . . . , xn]. Then the ideal Ic,L is minimally
generated by

(
s

s−c+1

)
homogeneous generators of degree s− c+ 1.

Proof. See [34, Theorem 2.3] for generation and [34, Corollary 3.5] for minimality. �

Theorem 4.12. Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let L =
{L1, . . . , Ls} be s linear forms in R = k[x0, . . . , xn]. Then for all integers m ≥ 2,

I
(m)
c,L = Imc,L +M for all m ≥ 2

where

M =

〈
La1
1 · · ·Las

s

∣∣∣∣ |{ai | ai > 0}| ≥ s− c+ 2, and
ai1 + · · ·+ aic ≥ m for all 1 ≤ ii < · · · < ic ≤ s

〉
.

Proof. This result is [20, Theorem 3.13]. The main idea is to first prove a monomial
version of this result, i.e., first verify the theorem for the case that L = {x0, . . . , xn}.
Then one applies a powerful result of Geramita, Harbourne, Migliore, and Nagel [22,
Theorem 3.6] that allows one to extend the monomial case to any star configuration. �

Example 4.13. Returning to the star configuration of Example 4.2, we have n = 2, s = 3,
and c = 2, with L = {x, y, z}. If we consider the case m = 2, then the ideal M of Theorem
4.12 is

M =

〈
xa1ya2za3

∣∣∣∣ |{ai | ai > 0}| ≥ 3− 2 + 2 = 3, and
a1 + a2 ≥ 2, a1 + a3 ≥ 2, a2 + a3 ≥ 2

〉
= 〈xyz〉

So,

I
(2)
2,L = 〈xyz〉+ I22,L.

Note that in the above example, the ideal M = 〈xyz〉 actually equals

I1,L = 〈x〉 ∩ 〈y〉 ∩ 〈z〉 = 〈xyz〉.

This is an example of a much more general phenomenon, as first shown in [20, Corollary
3.14].

Corollary 4.14. With the notation as in Theorem 4.12,

I
(2)
c,L = Ic−1,L + I2c,L.

We now have enough machinery to determine the symbolic defect for all linear star
configurations when m = 2.

Theorem 4.15. Fix positive integers n, c, and s with 1 ≤ c ≤ min{n, s} and let L =
{L1, . . . , Ls} be s linear forms in R = k[x0, . . . , xn]. Then

sdefect(Ic,L, 2) =

(
s

c− 2

)
.
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Proof. By Corollary 4.14, we know I
(2)
c,L = Ic−1,L + I2c,L, so we need to show that all the

generators of Ic−1,L are required. By Lemma 4.11, the ideal Ic−1,L has
(

s
s−(c−1)+1

)
=
(

s
c−2

)
minimal generators of degree s− c+ 2. By the same lemma, the ideal Ic,L is generated in
degree (s− c+ 1), so I2c,L is generated by forms of degree 2(s− c+ 1) > s− c+ 2. So, we
need all of the generators of Ic−1,L via this degree argument. �

The above result leads to the following open question:5

Question 4.16. What is sdefect(Ic,L,m) for m > 2?

Some upper bounds sdefect(Ic,L,m) can be found in [20], but there are no exact formu-
las.

4.4. Two applications. We now want to take a moment to discuss two possible appli-
cations of the symbolic defect. We begin by recalling that for any homogeneous ideal
I ⊆ R, α(I) = min{d | (I)d 6= 0}.

Our first application deals with finite sets of points in P2. That is, let X = {P1, . . . , Ps},
and let IX be the associated homogeneous ideal that contains all forms that vanish on X.
We then have the following lemma (see [20, Lemma 4.1]):

Lemma 4.17. Let X ⊆ P2 be a set of points with α(IX) = α. Then IX has at most α+ 1
minimal generators of degree α.

As first shown in [20, Theorem 4.5], if sdefect(IX, 2) = 1, the points must lie in a special
configuration.

Theorem 4.18. Let X ⊆ P2 be a set of s points such that IX has α+1 minimal generators
of degree α = α(IX). If sdefect(IX, 2) = 1, then X is a linear star configuration.

As noted in Theorem 4.5, if X is a set of points in P2 that is not a complete intersection,
then sdefect(IX, 2) 6= 0. In some cases, we can now show that it is not equal to one.

We say that X ⊆ P2 is in generic position if the Hilbert function of R/IX is

HR/IX(t) = min

{
dimk Rt =

(
t+ 2

2

)
, |X|

}
for all integers t ≥ 0.

Corollary 4.19. Suppose X ⊆ P2 is a set of points in generic position with |X| =
(
`
2

)
for

some ` ≥ 4. Then sdefect(IX, 2) > 1.

Proof. Because X is in generic position, X is not a complete intersection, which means
sdefect(IX, 2) 6= 0. Since |X| =

(
`
2

)
, we can show that α(IX) = `− 1, and IX has ` minimal

generators of degree α. Since X is not a star configuration, Theorem 4.18 implies that
sdefect(IX, 2) 6= 1. So the conclusion follows. �

5Another good research problem.
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As a second application, we make the observation that when sdefect(I,m) = 1, then
one can create a useful short exact sequence that may be exploited. Specifically, if
sdefect(I,m) = 1, this means that there exists a homogeneous form F such that I(m) =
〈F 〉+ Im. We can then build a short exact sequence that relates Im and I(m):

0 −→ Im ∩ 〈F 〉 −→ Im ⊕ 〈F 〉 −→ Im + 〈F 〉 = I(m) −→ 0.

This short exact sequence allowed [20, Theorem 5.3] to use a mapping cone construction

to determine the minimal graded free resolution of I
(2)
2,L ⊆ P2.

4.5. Connection to the containment problem. We now turn our attention to the
containment problem. For any homogeneous ideal I ⊆ R, Ein, Lazarsfeld, and Smith [14]
showed that for any fixed m, there exists an integer r ≥ m such that I(r) ⊆ Im. The
containment problem is to find the smallest such r.

Arsie and Vatne [1] observed that the module I(m)/Im has the following submodules:

I(m)

Im
⊇ I(m+1) + Im

Im
⊇ I(m+2) + Im

Im
⊇ · · · ⊇ I(r) + Im

Im
.

The containment problem is thus equivalent to finding the smallest r such that I(r)+Im

Im
= 0.

One can ask the following question:

Question 4.20. If sdefect(I,m) = 1, does this give any information on the containment
problem?

I don’t know much about this question. However, here is an example that shows that
the containment problem is related to the longest possible chain of proper submodules in
I(m)/Im.

Example 4.21. Return to the ideal I = 〈xy, xz, yz〉 in Example 4.2. We showed that[
I(2)

I2

]
t

= 0 except if t = 3.

In fact, the only possible proper submodule of of I(2)/I2 is the zero module. Since (I(3) +
I2)/I2 is a proper submodule of I(2)/I2, this forces (I(3) + I2)/I2 = 0, or equivalently,
I(3) ⊆ I2.
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Lelong (Analyse), 1975/76, Lecture Notes Math. 578, Springer, 1977, 108–135.

[45] M. Waldschmidt. Nombres transcendants et groupes algébriques, Astérisque 69/70, Socéte

Mathématiqué de France, 1979.

[46] O. Zariski, P. Samuel, Commutative Algebra, vol. II. Springer, 1960.

Department of Mathematics & Statistics, McMaster University, Hamilton, ON L8S

4L8, Canada

E-mail address: vantuyl@math.mcmaster.ca

URL: https://ms.mcmaster.ca/~vantuyl/


	1. Lecture 1: The associated primes of powers of ideals
	1.1. Associated primes of modules
	1.2. Reducing the problem
	1.3. Sketch of the missing details
	1.4. Final comments

	2. Lecture 2: The associated primes of powers of square-free monomial ideals
	2.1. General (useful) facts
	2.2. The index of stability
	2.3. Persistence of primes
	2.4. Elements of ass(Is)

	3. Lecture 3: The Waldschmidt constant of square-free monomial ideal
	3.1. Origin story: points in P2
	3.2. Symbolic powers and the Waldschmidt constant
	3.3. The square-free monomial case
	3.4. Connection to graph theory

	4. Lecture 4: Comparing I(m) and Im: the symbolic defect
	4.1. Introducing the symbolic defect
	4.2. Some basic properties
	4.3. Computing sdefect(I,m)
	4.4. Two applications
	4.5. Connection to the containment problem

	References

