Math 2X03 - Homework 4

Due: May 31, 2018 (by 10:00 pm) (The following problems are from the textbook.)

1. $(\S{16.3 \#18})$

- (a) Find a function f such that $\vec{F} = \nabla f$, where $\vec{F}(x, y, z) = (\sin y)\vec{i} + (x \cos y + \cos z)\vec{j} (y \sin z)\vec{k}$.
- (b) Use part (a) to evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the curve C given by $\vec{r}(t) = (\sin t)\vec{i} + t\vec{j} + 2t\vec{k}, 0 \le t \le \pi/2.$
- 2. (§16.4 #4) Evaluate the line integral $\oint_C x^2 y^2 dx + xy dy$, where C consists of the arc of the parabola $y = x^2$ from (0,0) to (1,1) and the line segments from (1,1) to (0,1) and from (0,1) to (0,0), by two method: (a) directly and (b) using Green's Theorem.
- 3. (§16.4 #8) Use Green's Theorem to evaluate the line integral $\int_C y^4 dx + 2xy^3 dy$, where C is the ellipse $x^2 + 2y^2 = 2$ with counter-clockwise direction.
- 4. Determine whether or not the vector field is conservative. If it is conservative, find a function f such that $\vec{F} = \nabla f$.
 - (a) (§16.5 #14) $\vec{F} = (xyz^4)\vec{i} + (x^2z^4)\vec{j} + (4x^2yz^3)\vec{k}$.
 - (b) (§16.5 #18) $\vec{F} = (e^x \sin(yz))\vec{i} + (ze^x \cos(yz))\vec{j} + (ye^x \cos(yz))\vec{k}.$