MATH 2X03, Sample Exam

Dr. Changliang Wang

Date: June, 2018.	
Duration of Exam: 2.5 hours	
Family Name:	First Name:
Student Number:	
This examination paper contains 6 quest	ions (with parts) on a total of 12 pages

This examination paper contains 6 questions (with parts) on a total of 12 pages. You are responsible for ensuring that your copy of the exam paper is complete. Please bring any discrepancies to the attention of your invigilator.

INSTRUCTIONS:

- 1. Answer all questions in the spaces provided, and make sure that you justify clearly all steps in your solutions.
- 2. The only calculator that is permitted in this examination is the Casio FX 991MS or MS Plus calculator.

Question	Max Marks	Marks
1	6	
2	9	
3	8	
4	9	
5	7	
6	11	
Total	50	

Question 1. [6 marks] Decide whether the statements in parts (a) to (c) are true or false and circle your choices. **No justification needed**.

(a) [2 marks] Let \vec{F} be a vector field of the form $\vec{F}(x, y, z) = (f(y, z), g(x, z), h(x, y))$. Then $\operatorname{div} \vec{F} = 0$.

TRUE FALSE

(b) [2 marks] Let \vec{F} be the vector field given by $\vec{F}(x, y, z) = (-y, x, z)$. There exists a function f such that $\vec{F} = \nabla f$.

TRUE FALSE

(c) [2 marks] If \vec{F} is a vector field defined on all of \mathbb{R}^2 whose component functions have continuous derivatives, then \vec{F} is conservative if and only if $\int_C \vec{F} d\vec{r}$ is independent of path.

TRUE FALSE

Question 2. For both parts of this question, let S be the surface with parametric equation

$$\vec{r}(\rho,\theta) = (\rho\cos\theta, \rho\sin\theta, \theta), 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2}.$$

(a) [4 marks] Find an equation of the tangent plane of the surface S at the point $\vec{r}(\frac{1}{2}, \frac{\pi}{4})$.

Question $2 \pmod{2}$

(b) [5 marks] Evaluate the integral

 $\iint_S x dS.$

Question 3. [8 marks] Evaluate $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = (z, zx, xy)$ and S is the surface given by $z = x \sin y$, $0 \le x \le 2$, $0 \le y \le \pi$, oriented downward.

Question 4. [9 marks] Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$, where $\vec{F}(x, y, z) = (\tan^{-1}(x^2yz^2), x^2y, x^2z^2)$, and S is the cone $x = \sqrt{y^2 + z^2}$, $0 \le x \le 2$, oriented in the direction of the positive x-axis.

Question 4 (cont'd)

Question 5. [7 marks] Let \vec{F} be the vector field given by

$$\vec{F}(x, y, z) = (y, xz, xy).$$

Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$ along the curve C given by the parametric equations: $x = \cos t, y = \sin t, z = \tan t, 0 \le t \le \frac{\pi}{4}$.

Question 5 (cont'd)

Question 6. [11 marks] Use the Divergence Theorem to evaluate $\iint_S \vec{F} \cdot d\vec{S}$, where \vec{F} is the vector field given by

$$\vec{F}(x,y,z) = (\cos(y) + xy^2, x\sin(z), y + x^2z),$$

and S is the part of the paraboloid $z = x^2 + y^2$ between the planes z = 0 and z = 4, oriented downward. (Note that S does not contain the interior of the circle $x^2 + y^2 = 4$ in the plane z = 4.)

Question $6 \pmod{d}$

ROUGH WORK

THE END