Syzygies of Random Monomial Ideals

Daniel Erman and Jay Yang
University of Wisconsin - Madison

December 10, 2017
arXiv:1706.01488

Random Monomial Ideals

Definition
Define a Random Stanley-Reisner Ideal by taking the Stanley-Reisner ideal associated with a random flag complex, denoted by $\Delta(n, p)$.

Random Monomial Ideals

Definition

Define a Random Stanley-Reisner Ideal by taking the Stanley-Reisner ideal associated with a random flag complex, denoted by $\Delta(n, p)$.

Example
435

Random Monomial Ideals

Definition
Define a Random Stanley-Reisner Ideal by taking the Stanley-Reisner ideal associated with a random flag complex, denoted by $\Delta(n, p)$.

Example

Random Monomial Ideals

Definition
Define a Random Stanley-Reisner Ideal by taking the Stanley-Reisner ideal associated with a random flag complex, denoted by $\Delta(n, p)$.

Example

Random Monomial Ideals

Definition

Define a Random Stanley-Reisner Ideal by taking the Stanley-Reisner ideal associated with a random flag complex, denoted by $\Delta(n, p)$.

Example

$$
I_{\Delta}=\left(x_{1} x_{3}, x_{1} x_{5}, x_{1} x_{6}, x_{2} x_{4}, x_{2} x_{5}, x_{2} x_{6}, x_{4} x_{5}, x_{4} x_{6}\right)
$$

Syzygies

Definition

Let k be a field and M a module, then the betti numbers are

$$
\beta_{i, j}(M, k)=\operatorname{dim} \operatorname{Tor}_{i}(M, k)_{j}
$$

These are then usually displayed as a table where the p-th column and q-th row is the $\beta_{p, p+q}$ entry

$$
\begin{array}{|llll}
\hline \beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots
\end{array}
$$

Asymptotic Syzygies

Theorem (Ein-Lazarsfeld, 2012)
Let X be a smooth, d-dimensional projective variety and let A be a very ample divisor on X. For any $n \geq 1$, let S_{n} be the homogeneous coordinate ring of X embedded by $n A$. For each $1 \leq k \leq d, \rho_{k}\left(S_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.

Definition

Let M be a module over a polynomial ring, then we define a "density" for the k-th row of the betti table as follows

$$
\rho_{k}(M):=\frac{\#\left\{i \in[0, \operatorname{pdim}(M)] \text { where } \beta_{i, i+k}(M) \neq 0\right\}}{\operatorname{pdim}(M)+1}
$$

Asymptotic Syzygies

Question

What other families have the property that $\rho_{k}\left(I_{n}\right) \rightarrow 1$

- Intergral Varieties (Zhou '14)
- Arithmetically CM (Ein Erman Lazarsfeld '16)
- Iterated subdivision of Stanley Resiner rings (Conca Juhnke-Kubitzke Welker '14)

Asymptotic Syzygies

Question

What other families have the property that $\rho_{k}\left(I_{n}\right) \rightarrow 1$

- Intergral Varieties (Zhou '14)
- Arithmetically CM (Ein Erman Lazarsfeld '16)
- Iterated subdivision of Stanley Resiner rings (Conca Juhnke-Kubitzke Welker '14)
- Random Stanley Reisner Ideals

Nonvanishing

Theorem (Erman-Y., 2017)

Fix i, j with $1 \leq i$ and $i+1 \leq j \leq 2 i$ and let $r:=j-i-1$. Fix some constant $0<\epsilon \leq \frac{1}{2}$ and let $\Delta \sim \Delta(n, p)$.

1. If $\frac{1}{n^{1 / r}} \ll p \leq \epsilon$ then $\mathbb{P}\left[\beta_{i, j}\left(S / I_{\Delta}\right) \neq 0\right] \rightarrow 1$.
2. If $p \ll \frac{1}{n^{1 / r}}$ then $\mathbb{P}\left[\beta_{i, j}\left(S / I_{\Delta}\right)=0\right] \rightarrow 1$.

Corollary (Erman-Y., 2017)
Fix some $r \geq 1$. Let $\Delta \sim \Delta(n, p)$ with $\frac{1}{n^{1 / r}} \ll p \ll 1$. For each $1 \leq k \leq r+1$, we have

$$
\rho_{k}\left(S / I_{\Delta}\right) \rightarrow 1
$$

in probability.

Nonvanishing

Theorem (Erman-Y., 2017)
Fix i, j with $1 \leq i$ and $i+1 \leq j \leq 2 i$ and let $r:=j-i-1$. Fix some constant $0<\epsilon \leq \frac{1}{2}$ and let $\Delta \sim \Delta(n, p)$.

1. If $\frac{1}{n^{1 / r}} \ll p \leq \epsilon$ then $\mathbb{P}\left[\beta_{i, v}\left(S / I_{\Delta}\right) \neq 0\right] \rightarrow 1$.
2. If $p \ll \frac{1}{n^{1 / r}}$ then $\mathbb{P}\left[\beta_{i, v}\left(S / I_{\Delta}\right)=0\right] \rightarrow 1$.

Sketch of Proof

For the first statement it suffices to show that $\mathbb{E}\left[\beta_{i, j}\right]$ goes to infinity. For that we'll apply Hochster's formula.

Theorem (Hochster's Formula)
For Δ a simplicial complex and I_{Δ} the associated Stanley-Reisner Ideal

$$
\beta_{i, j}\left(S / I_{\Delta}\right)=\sum_{|\alpha|=j} \operatorname{dim} \tilde{H}_{i-j-1}\left(\left.\Delta\right|_{\alpha}\right)
$$

Lower Bound

We'll restrict specifically to the case where $j=2 i$ and $i=r+1$ To find an lower bound on $\mathbb{E}\left[\beta_{i, j}\right]$, we consider the following particular flag complex

$$
\diamond_{r}=r \text {-fold suspension of 2-points }
$$

$$
r=0
$$

$$
r=1
$$

$$
r=2
$$

Lower Bound

Lemma
$\widetilde{H}_{r}\left(\diamond_{r}\right)=\mathbb{Z}$ and \diamond_{r} has the fewest verticies of any flag complex with r-th homology.
Then

$$
\begin{aligned}
\mathbb{E}\left[\beta_{i, j}\left(S / I_{\Delta}\right)\right] & \geq \mathbb{E}\left[\# \text { of } \diamond_{r} \text { as subcomplexes }\right] \\
& =C n^{2 r+2} p^{r(2 r+2)}(1-p)^{r+1} \\
& =C\left(n p^{r}\right)^{2 r+2}(1-p)^{r+1}
\end{aligned}
$$

Then if $\frac{1}{n^{1 / r}} \ll p \ll 1$, we get that

$$
\mathbb{E}\left[\beta_{i, j}\left(S / I_{\Delta}\right)\right] \rightarrow \infty
$$

Normality

There is another asymptotic behavior that we observed, in this case inspired by a result of Ein, Erman, and Lazarsfeld.

Theorem (Ein-Erman-Lazarsfeld 2012)
For C a smooth projective curve, with $C \xrightarrow{\left|A_{n}\right|} \mathbb{P}^{N}$. where the degrees of the A_{n} are increasing, then the first row of the betti table of converges to a binomial.

Normality

Theorem (Erman-Y., 2017)

Fix a constant $0<c<1$ and let $\Delta \sim \Delta\left(n, \frac{c}{n}\right)$ be a random flag complex. If $\left\{i_{n}\right\}$ is an integer sequence satisfying $i_{n}=n / 2+o(n)$, and if $C:=\frac{1-c}{2}$, then

$$
\frac{\beta_{i_{n}, i_{n}+1}\left(S / I_{\Delta}\right)}{\operatorname{Cn}\binom{n}{i_{n}}} \longrightarrow 1 \quad \text { in probability. }
$$

Normality

Theorem (Erman-Y., 2017)

Fix a constant $0<c<1$ and let $\Delta \sim \Delta\left(n, \frac{c}{n}\right)$ be a random flag complex. If $\left\{i_{n}\right\}$ is an integer sequence satisfying $i_{n}=n / 2+o(n)$, and if $C:=\frac{1-c}{2}$, then

$$
\frac{\beta_{i_{n}, i_{n}+1}\left(S / I_{\Delta}\right)}{C n\binom{n}{i_{n}}} \longrightarrow 1 \quad \text { in probability. }
$$

Sketch of Proof

Again l'll provide a lower bound, the uppper bound proceeds similarly.
Because we took $p=c / n$ for $0<c<1$ we can assume that our graph is always a collection of unicyclic components.

$$
\begin{aligned}
\beta_{i, i+1}\left(S / I_{\Delta}\right) & =\sum_{|\alpha|=i} \widetilde{H}_{0}\left(\left.\Delta\right|_{\alpha}\right) \\
& =\sum_{|\alpha|=i} i-E\left(\left.\Delta\right|_{\alpha}\right)+C\left(\left.\Delta\right|_{\alpha}\right) \\
& \geq\binom{ n}{i} \cdot i-\sum_{|\alpha|=i} E\left(\left.\Delta\right|_{\alpha}\right) \\
& =\binom{n}{i} \cdot i-\binom{n}{i-2} E(\Delta) \\
& \sim\binom{n}{i}(C n)
\end{aligned}
$$

Projective Dimension/CM

Theorem (Erman-Y., 2017)

For any $k \geq 1$, and any p satisfying $\frac{1}{n^{2 / 3}} \ll p \ll\left(\frac{\log (n)}{n}\right)^{2 /(k+3)}$ we have that $\frac{\operatorname{codim}\left(S / I_{\Delta}\right)}{\operatorname{pdim}\left(S / I_{\Delta}\right)} \rightarrow 1$ in probability, yet the probability that S / I_{Δ} is Cohen-Macaulay goes to 0 .

Other Applications of Randomness

- Random Toric Surfaces (Y. 2016)
- Other models of Random Monomial Ideals (De Loera,Petrovíc,Silverstein,Stasi, Wilburne 2017)

Thank You

