Computing Betti Tables with HTCondor

Jay Yang

May 18, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What are Betti Tables

- A tool in Algebraic Geomtry
- A shape determines a "barcode" of integers known as a Betti table.

Example

- Unfortunately we don't understand the dictionary between shapes and "barcodes"
- The goal is to understand how this correspondence encodes geometry

Examples

- Twin Primes Conjecture
- Riemann Hypothesis
- Average Rank of Elliptic Curves

Betti tables of the projective plane of degree d

d	Pen and Paper	
2	Minutes	
3	Hours	
4	Impractical	

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Gröbner Basis

- Based on polynomial algebra
- Developed in the 60s
- Implemented in the 80s
- Advantages
 - Already implemented
 - Well optimized
- Disadvantages
 - Difficult to distribute

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Doubly exponential

d	Pen and Paper	Gröbner Basis
2	Minutes	0.0005s
3	Hours	0.007s
4	Impractical	115s
5		Out of Memory

<□ > < @ > < E > < E > E のQ @

- Based on linear algebra
- Advantages
 - Based on well known linear algebra algorithms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Easily Distributable
- Disadvantages
 - Lose exactness

d	Pen and Paper	Gröbner Basis	Our Algorithm
2	Miniutes	0.0005s	$\sim 20 s$
3	Hours	0.007s	${\sim}1{ m m}$
4	Impractical	115s	$\sim 2 m$
5		Out of Memory	${\sim}11 \text{m}$
6			??

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

d	Construct	(Wall Time)	(CPU time)
	Matrices		
2	0.1s	\sim 20s	${\sim}10 s$
3	0.8s	${\sim}1$ m	$\sim 20 s$
4	30s	$\sim 2m$	$\sim 5 { m m}$
5	8m	${\sim}11 { m m}$	\sim 40m
6	4h	?	?

```
executable = wrapper.sh
output = outdir/single_entry_14_1.$(CLUSTER).$(PROCESS).ou
error = outdir/single_entry_14_1.$(CLUSTER).$(PROCESS).err
log = single_entry_14_1.$(CLUSTER).log
```

```
universe = vanilla
```

```
arguments=$(infile) ./out_14_1/
```

```
request_memory = 6G
```

queue infile matching files ./matrices/map_14_1/*.dat

・ロト・日本・モート モー うへぐ

▶ Run *d* = 6

- Largest matrices for d = 5 use 5GB of ram
- Largest matrices for d = 6 use 10-100GB? of ram

- Dynamic Memory Requests in Condor
- Flock to CHTC's HTCondor pool on campus
- Obtain partial tables for d > 6
- Investigate other rank algorithms other than QR
- More complex shapes
- Create a database of Betti tables

Thanks to

- Thanks to my collaborators Daniel Erman and David Bruce
- Steve Goldstein for introducing us to HTCondor and helping us understand and use it
- Steve Wright for his advice on matrix rank for sparse matrices
- The organizers for giving us the opportunity to give this talk