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Syzygies of the Veronese

We will consider the syzygies of the image of map

P2 |O(d)|−−−−→ P(
d+2
2 )−1

Which we will denote K (0; d). As an extension we will also
consider syzygies coming from the pushforward of linebundles
O(b), which we will denote K (b; d).



Goals

I Compute the multigraded entries of K (b; d) for all b and as
many d as possible using numerical techniques and high
throughput computing.

I Develop techniques for using numerical linear algebra and
distributed computation to compute betti numbers.

I Create an online resource containing all of the computed data.

I Investigate the Schur decomposition of K (b; d).

I Investigate new conjectures about the Veronese.



Computing Syzygies

By noticing that Kp,q(M) = Tor(M, k)p,p+q this gives two
techniques

I Resolving M: We can compute a minimal free resolution of
M, i.e.

M ← F1 ← F2 ← · · · ← Fn

such that ∂Fi ⊆ mFi−1
I Resolve k : Starting with the Koszul complex

k ←
1∧
R ←

2∧
R ← ..←

n∧
R.

Then Tor(M, k) is computed by tensoring this complex with
M and computing homology.



Computing Syzygies Using the Koszul Complex

Example

For K9,0(3; 6) we need to compute the rank of the linear map

9∧
S6 ⊗ S3 →

8∧
S6 ⊗ S9

As it turns out this map is block diagonal with one block for every
multidegree, so we can decompose it into 178 matrices taking a
total of 2GB of space.

This is not a new technique, both Castryck, Cools, Demeyer, and
Lemmens in 2016[3] and Greco and Martino in 2016[2], used this
to compute syzygies.



The Computation

Example

K (0; 5)

1 − · · · − − − − − − −
− 165 · · · 134640 39780 ? ? − − −
− − · · · − ? ? 2160 595 90 6

I Reduce via duality and Hilbert functions

I Compute matrices using code in C++

I Use existing sparse matrix code (LUSOL[1]) to compute the
LU decomposition, which we use to compute the rank

I Use HTCondor, to run all of matrices involved in a distributed
manner



The Computation

Example

K (0; 5) K (2; 5)
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− − − 375 4858 39780 134640 · · · 165 −
− − − − − − − · · · − 1
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Some Statistics

I For d = 6, generating the matrices requires ∼ 1 hour

I Largest completed matrices are ∼ 600,000x1,000,000

I They are sparse, with the matrices for Kp,q(b; d) having p
non-zero entries per row

Largest Computations

max memory max runtime total runtime

K5,0(2; 4) 800MB 30 sec 10 min

K8,0(3; 5) 800MB 2 min 1 hr

K8,0(3; 6) 500GB 5 days 13 days



Post Processing

Note
The numerical linear algebra algorithms we use can have errors.

I Given the multigraded data we construct the Schur
decomposition of Kp,q greedily.

I This can detect and correct small errors.

I The data is then placed on our website
http://syzygydata.com.

http://syzygydata.com


Conjectures

I We give a conjectural description of the most dominant
weights of the Schur modules in Kp,q(b; d)

I We also provide evidence for a conjecture for the distribution
of the values of the strands of K (b; d)



Normal Distribution Conjecture

Conjecture (Ein-Erman-Lazarsfeld)

On Pn fix q and b, then consider the function p 7→ dimKp,q(b; d).
Then as d →∞, then with appropriate normalization, this
function converges to a normal distribution.
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